Points in which polygon - python

I have several (order of M) points [(x0,y0),...,(xn,yn)]. I also have limited number of hexagons. I want to find each point falls in which hexagon. Using shapely this can be done for 1 point at a time so the loop below does the job. But is there any other way to do it faster?
from shapely.geometry import Point
from shapely.geometry.polygon import Polygon
zones = np.zeros(n)-1
for j,p in enumerate(points):
point = Point(p)
for i in range(len(poly_hex)): #poly_hex = list of hexagonal polygones
polygon = Polygon(poly_hex[i])
if polygon.contains(point):
zones[j] = int(i)
break

Some ideas to speed things up:
Don't convert your hexagons to polygon = Polygon(poly_hex[i]) at each step of the inner loop. Calculate them once before the loop and store them in a list.
As the surface of a hexagon is close to a circle, also make a list of just the centre and the radius of the hexagons. Inside the loop, first test the distance between the point p and the centre of each hexagon, comparing to the radius. Only in case p is less than the radius to the centre, do an explicit test to see whether it is inside the hexagon.
If this still isn't fast enough, and depending on how small, and how far apart the hexagons are relative to your points, you could speed things up further with a quadtree or a grid. But this is less trivial. If most of the points are outside all hexagons, you could first test whether p is inside the convex hull of the hexagons.
Some remarks:
I don't understand your zone[j] = int(i). You convert i to an integer, while it already is an integer. Also, the way you store this, means a point can only be inside maximum one hexagon. Therefore, you can stop the loop as soon as you encountered such a hexagon. (There is also the rare case where a point is just on the edge between two hexagon. This might assign it to the first hexagon encountered. Or, due to rounding errors, even might have it outside both hexagons.)
If you want to save the zones as integers, create it as: zones = np.zeros(n, dtype=int)-1.
If your hexagons form a regular hexagonal grid, you can find the exact hexagon simply from the x and y coordinates without the need for in-polygon testing.

Related

Algorithm to check if cylinders are overlapping in 3D

I am creating a script to generate cylinders in a 3D space, however, I would like for them to not occupy the same region in space (avoid overlapping).
The cylinders are defined by a start and end point, and all have a fixed radius.
I am storing the existing cylinder in an array called listOfCylinders which is an nDim array of shape (nCylinders, 2Points [start, end], {x,y,z} coordinates of each point)
I was able to cook up:
def detect_overlap(new_start, new_end, listOfCylinders):
starts = listOfCylinders[:, 0]
ends = listOfCylinders[:, 1]
radius = 0.1
# Calculate the distance between the new cylinder and all the existing cylinders
dists = np.linalg.norm(np.cross(new_end - new_start, starts - new_start), axis=1) / np.linalg.norm(new_end - new_start)
# Check if any of the distances are less than the sum of the radii
if np.any(dists < (2*radius)):
return True
# If no overlap or intersection is found, return False
return False
But this is not accountting for situations where there is lateral overlaping.
Does anyone have a good algorithm for this?
Best Regards
WLOG one of the cylinders is vertical (otherwise rotate space). If you look at the projections of the apparent outline onto XY, you see a circle and a rectangle ended with ellipses. (For simplicity of the equations, you can also make the second cylindre parallel to XZ.)
If these 2D shapes do not overlap, your are done. Anyway, the intersection of a circle and an ellipse leads to a quartic equation.
You can repeat this process, exchanging the roles of the two cylinders. This gives a sufficient condition of non-overlap. Unfortunately, I am not sure it is necessary, though there is a direct connection to the plane separation theorem.
For a numerical approach, you can proceed as follows:
move the cylindre in the canonical position;
generate rectangles on the oblique cylindre, by rotation around the axis and using an angular parameter;
for all sides of the rectangles, detect interference with the cylindre (this involves a system of a quadratic inequation and two linear ones, which is quite tractable);
sample the angular parameter densely enough to check for no valid intersection.
I guess that a complete analytical solution is possible, but complex, and might anyway lead to equations that need to be solved numerically.

Implementing collisions using the Separating axis theorem and Pygame [duplicate]

This is what I am currently doing:
Creating 4 axis that are perpendicular to 4 edges of 2 rectangles. Since they are rectangles I do not need to generate an axis (normal) per edge.
I then loop over my 4 axes.
So for each axis:
I get the projection of every corner of a rectangle on to the axis.
There are 2 lists (arrays) containing those projections. One for each rectangle.
I then get the dot product of each projection and the axis. This returns a scalar value
that can be used to to determine the min and max.
Now the 2 lists contain scalars and not vectors. I sort the lists so I can easily select the min and max values. If the min of box B >= the max of box A OR the max of box B <= the min of box A then there is no collision on that axis and no collision between the objects.
At this point the function finishes and the loop breaks.
If those conditions are never met for all the axis then we have a collision
I hope this was the correct way of doing it.
The python code itself can be found here http://pastebin.com/vNFP3mAb
Also:
http://www.gamedev.net/page/reference/index.html/_/reference/programming/game-programming/collision-detection/2d-rotated-rectangle-collision-r2604
The problem i was having is that the code above does not work. It always detects a a collision even where there is not a collision. What i typed out is exactly what the code is doing. If I am missing any steps or just not understanding how SAT works please let me know.
In general it is necessary to carry out the steps outlined in the Question to determine if the rectangles "collide" (intersect), noting as the OP does that we can break (with a conclusion of non-intersection) as soon as a separating axis is found.
There are a couple of simple ways to "optimize" in the sense of providing chances for earlier exits. The practical value of these depends on the distribution of rectangles being checked, but both are easily incorporated in the existing framework.
(1) Bounding Circle Check
One quick way to prove non-intersection is by showing the bounding circles of the two rectangles do not intersect. The bounding circle of a rectangle shares its center, the midpoint of either diagonal, and has diameter equal to the length of either diagonal. If the distance between the two centers exceeds the sum of the two circles' radii, then the circles do not intersect. Thus the rectangles also cannot intersect. If the purpose was to find an axis of separation, we haven't accomplished that yet. However if we only want to know if the rectangles "collide", this allows an early exit.
(2) Vertex of one rectangle inside the other
The projection of a vertex of one rectangle on axes parallel to the other rectangle's edges provides enough information to detect when that vertex is inside the other rectangle. This check is especially easy when the latter rectangle has been translated and unrotated to the origin (with edges parallel to the ordinary axes). If it happens that a vertex of one rectangle is inside the other, the rectangles obviously intersect. Of course this is a sufficient condition for intersection, not a necessary one. But it allows for an early exit with a conclusion of intersection (and of course without finding an axis of separation because none will exist).
I see two things wrong. First, the projection should simply be the dot product of a vertex with the axis. What you're doing is way too complicated. Second, the way you get your axis is incorrect. You write:
Axis1 = [ -(A_TR[0] - A_TL[0]),
A_TR[1] - A_TL[1] ]
Where it should read:
Axis1 = [ -(A_TR[1] - A_TL[1]),
A_TR[0] - A_TL[0] ]
The difference is coordinates does give you a vector, but to get the perpendicular you need to exchange the x and y values and negate one of them.
Hope that helps.
EDIT Found another bug
In this code:
if not ( B_Scalars[0] <= A_Scalars[3] or B_Scalars[3] >= A_Scalars[0] ):
#no overlap so no collision
return 0
That should read:
if not ( B_Scalars[3] <= A_Scalars[0] or A_Scalars[3] <= B_Scalars[0] ):
Sort gives you a list increasing in value. So [1,2,3,4] and [10,11,12,13] do not overlap because the minimum of the later is greater than the maximum of the former. The second comparison is for when the input sets are swapped.

How can I correct the normal vectors of 3D model? [duplicate]

I'm a newbie to computer graphics so I apologize if some of my language is inexact or the question misses something basic.
Is it possible to calculate face normals correctly, given a list of vertices, and a list of faces like this:
v1: x_1, y_1, z_1
v2: x_2, y_2, z_2
...
v_n: x_n, y_n, z_n
f1: v1,v2,v3
f2: v4,v2,v5
...
f_m: v_j, v_k, v_l
Each x_i, y_i , z_i specifies the vertices position in 3d space (but isn't neccesarily a vector)
Each f_i contains the indices of the three vertices specifying it.
I understand that you can use the cross product of two sides of a face to get a normal, but the direction of that normal depends on the order and choice of sides (from what I understand).
Given this is the only data I have is it possible to correctly determine the direction of the normals? or is it possible to determine them consistently atleast? (all normals may be pointing in the wrong direction?)
In general there is no way to assign normal "consistently" all over a set of 3d faces... consider as an example the famous Möbius strip...
You will notice that if you start walking on it after one loop you get to the same point but on the opposite side. In other words this strip doesn't have two faces, but only one. If you build such a shape with a strip of triangles of course there's no way to assign normals in a consistent way and you'll necessarily end up having two adjacent triangles with normals pointing in opposite directions.
That said, if your collection of triangles is indeed orientable (i.e. there actually exist a consistent normal assignment) a solution is to start from one triangle and then propagate to neighbors like in a flood-fill algorithm. For example in Python it would look something like:
active = [triangles[0]]
oriented = set([triangles[0]])
while active:
next_active = []
for tri in active:
for other in neighbors(tri):
if other not in oriented:
if not agree(tri, other):
flip(other)
oriented.add(other)
next_active.append(other)
active = next_active
In CG its done by polygon winding rule. That means all the faces are defined so the points are in CW (or CCW) order when looked on the face directly. Then using cross product will lead to consistent normals.
However many meshes out there does not comply the winding rule (some faces are CW others CCW not all the same) and for those its a problem. There are two approaches I know of:
for simple shapes (not too much concave)
the sign of dot product of your face_normal and face_center-cube_center will tell you if the normal points inside or outside of the object.
if ( dot( face_normal , face_center-cube_center ) >= 0.0 ) normal_points_out
You can even use any point of face instead of the face center too. Anyway for more complex concave shapes this will not work correctly.
test if point above face is inside or not
simply displace center of face by some small distance (not too big) in normal direction and then test if the point is inside polygonal mesh or not:
if ( !inside( face_center+0.001*face_normal ) ) normal_points_out
to check if point is inside or not you can use hit test.
However if the normal is used just for lighting computations then its usage is usually inside a dot product. So we can use its abs value instead and that will solve all lighting problems regardless of the normal side. For example:
output_color = face_color * abs(dot(face_normal,light_direction))
some gfx apis have implemented this already (look for double sided materials or normals, turning them on usually use the abs value ...) For example in OpenGL:
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

Finding n nearest data points to grid locations

I'm working on a problem where I have a large set (>4 million) of data points located in a three-dimensional space, each with a scalar function value. This is represented by four arrays: XD, YD, ZD, and FD. The tuple (XD[i], YD[i], ZD[i]) refers to the location of data point i, which has a value of FD[i].
I'd like to superimpose a rectilinear grid of, say, 100x100x100 points in the same space as my data. This grid is set up as follows.
[XGrid, YGrid, ZGrid] = np.mgrid[Xmin:Xmax:Xstep, Ymin:Ymax:Ystep, Zmin:Zmax:Zstep]
XG = XGrid[:,0,0]
YG = YGrid[0,:,0]
ZG = ZGrid[0,0,:]
XGrid is a 3D array of the x-value at each point in the grid. XG is a 1D array of the x-values going from Xmin to Xmax, separated by a distance of XStep.
I'd like to use an interpolation algorithm I have to find the value of the function at each grid point based on the data surrounding it. In this algorithm I require 20 data points closest (or at least close) to my grid point of interest. That is, for grid point (XG[i], YG[j], ZG[k]) I want to find the 20 closest data points.
The only way I can think of is to have one for loop that goes through each data point and a subsequent embedded for loop going through all (so many!) data points, calculating the Euclidean distance, and picking out the 20 closest ones.
for i in range(0,XG.shape):
for j in range(0,YG.shape):
for k in range(0,ZG.shape):
Distance = np.zeros([XD.shape])
for a in range(0,XD.shape):
Distance[a] = (XD[a] - XG[i])**2 + (YD[a] - YG[j])**2 + (ZD[a] - ZG[k])**2
B = np.zeros([20], int)
for a in range(0,20):
indx = np.argmin(Distance)
B[a] = indx
Distance[indx] = float(inf)
This would give me an array, B, of the indices of the data points closest to the grid point. I feel like this would take too long to go through each data point at each grid point.
I'm looking for any suggestions, such as how I might be able to organize the data points before calculating distances, which could cut down on computation time.
Have a look at a seemingly simmilar but 2D problem and see if you cannot improve with ideas from there.
From the top of my head, I'm thinking that you can sort the points according to their coordinates (three separate arrays). When you need the closest points to the [X, Y, Z] grid point you'll quickly locate points in those three arrays and start from there.
Also, you don't really need the euclidian distance, since you are only interested in relative distance, which can also be described as:
abs(deltaX) + abs(deltaY) + abs(deltaZ)
And save on the expensive power and square roots...
No need to iterate over your data points for each grid location: Your grid locations are inherently ordered, so just iterate over your data points once, and assign each data point to the eight grid locations that surround it. When you're done, some grid locations may have too few data points. Check the data points of adjacent grid locations. If you have plenty of data points to go around (it depends on how your data is distributed), you can already select the 20 closest neighbors during the initial pass.
Addendum: You may want to reconsider other parts of your algorithm as well. Your algorithm is a kind of piecewise-linear interpolation, and there are plenty of relatively simple improvements. Instead of dividing your space into evenly spaced cubes, consider allocating a number of center points and dynamically repositioning them until the average distance of data points from the nearest center point is minimized, like this:
Allocate each data point to its closest center point.
Reposition each center point to the coordinates that would minimize the average distance from "its" points (to the "centroid" of the data subset).
Some data points now have a different closest center point. Repeat steps 1. and 2. until you converge (or near enough).

Separating Axis Theorem and Python

This is what I am currently doing:
Creating 4 axis that are perpendicular to 4 edges of 2 rectangles. Since they are rectangles I do not need to generate an axis (normal) per edge.
I then loop over my 4 axes.
So for each axis:
I get the projection of every corner of a rectangle on to the axis.
There are 2 lists (arrays) containing those projections. One for each rectangle.
I then get the dot product of each projection and the axis. This returns a scalar value
that can be used to to determine the min and max.
Now the 2 lists contain scalars and not vectors. I sort the lists so I can easily select the min and max values. If the min of box B >= the max of box A OR the max of box B <= the min of box A then there is no collision on that axis and no collision between the objects.
At this point the function finishes and the loop breaks.
If those conditions are never met for all the axis then we have a collision
I hope this was the correct way of doing it.
The python code itself can be found here http://pastebin.com/vNFP3mAb
Also:
http://www.gamedev.net/page/reference/index.html/_/reference/programming/game-programming/collision-detection/2d-rotated-rectangle-collision-r2604
The problem i was having is that the code above does not work. It always detects a a collision even where there is not a collision. What i typed out is exactly what the code is doing. If I am missing any steps or just not understanding how SAT works please let me know.
In general it is necessary to carry out the steps outlined in the Question to determine if the rectangles "collide" (intersect), noting as the OP does that we can break (with a conclusion of non-intersection) as soon as a separating axis is found.
There are a couple of simple ways to "optimize" in the sense of providing chances for earlier exits. The practical value of these depends on the distribution of rectangles being checked, but both are easily incorporated in the existing framework.
(1) Bounding Circle Check
One quick way to prove non-intersection is by showing the bounding circles of the two rectangles do not intersect. The bounding circle of a rectangle shares its center, the midpoint of either diagonal, and has diameter equal to the length of either diagonal. If the distance between the two centers exceeds the sum of the two circles' radii, then the circles do not intersect. Thus the rectangles also cannot intersect. If the purpose was to find an axis of separation, we haven't accomplished that yet. However if we only want to know if the rectangles "collide", this allows an early exit.
(2) Vertex of one rectangle inside the other
The projection of a vertex of one rectangle on axes parallel to the other rectangle's edges provides enough information to detect when that vertex is inside the other rectangle. This check is especially easy when the latter rectangle has been translated and unrotated to the origin (with edges parallel to the ordinary axes). If it happens that a vertex of one rectangle is inside the other, the rectangles obviously intersect. Of course this is a sufficient condition for intersection, not a necessary one. But it allows for an early exit with a conclusion of intersection (and of course without finding an axis of separation because none will exist).
I see two things wrong. First, the projection should simply be the dot product of a vertex with the axis. What you're doing is way too complicated. Second, the way you get your axis is incorrect. You write:
Axis1 = [ -(A_TR[0] - A_TL[0]),
A_TR[1] - A_TL[1] ]
Where it should read:
Axis1 = [ -(A_TR[1] - A_TL[1]),
A_TR[0] - A_TL[0] ]
The difference is coordinates does give you a vector, but to get the perpendicular you need to exchange the x and y values and negate one of them.
Hope that helps.
EDIT Found another bug
In this code:
if not ( B_Scalars[0] <= A_Scalars[3] or B_Scalars[3] >= A_Scalars[0] ):
#no overlap so no collision
return 0
That should read:
if not ( B_Scalars[3] <= A_Scalars[0] or A_Scalars[3] <= B_Scalars[0] ):
Sort gives you a list increasing in value. So [1,2,3,4] and [10,11,12,13] do not overlap because the minimum of the later is greater than the maximum of the former. The second comparison is for when the input sets are swapped.

Categories