I have a np.ndarray with the shape (24, 3). I want to flatten this array but in a rathor unusual way. I would like to have [0:8, 0] then [0:8, 1] then [0:8, 2] then [8:16, 0] and so on.
Of course i could do it the brute force way but maybe there is a more elegant and efficient solution to this problem.
new_array = np.array([])
np.append(new_array, old_array[0:8, 0])
np.append(new_array, old_array[0:8, 1])
np.append(new_array, old_array[0:8, 2])
np.append(new_array, old_array[8:16, 0])
np.append(new_array, old_array[8:16, 1])
np.append(new_array, old_array[8:16, 2])
np.append(new_array, old_array[16:24, 0])
np.append(new_array, old_array[16:24, 1])
np.append(new_array, old_array[16:24, 2])
Reshape, permute and reshape -
n = 8 # cut length along first axis
new_array = old_array.reshape(-1,n,old_array.shape[1]).swapaxes(1,2).ravel()
Related
I already know that Numpy "double-slice" with fancy indexing creates copies instead of views, and the solution seems to be to convert them to one single slice (e.g. This question). However, I am facing this particular problem where i need to deal with an integer indexing followed by boolean indexing and I am at a loss what to do. The problem (simplified) is as follows:
a = np.random.randn(2, 3, 4, 4)
idx_x = np.array([[1, 2], [1, 2], [1, 2]])
idx_y = np.array([[0, 0], [1, 1], [2, 2]])
print(a[..., idx_y, idx_x].shape) # (2, 3, 3, 2)
mask = (np.random.randn(2, 3, 3, 2) > 0)
a[..., idx_y, idx_x][mask] = 1 # assignment doesn't work
How can I make the assignment work?
Not sure, but an idea is to do the broadcasting manually and adding the mask respectively just like Tim suggests. idx_x and idx_y both have the same shape (3,2) which will be broadcasted to the shape (6,6) from the cartesian product (3*2)^2.
x = np.broadcast_to(idx_x.ravel(), (6,6))
y = np.broadcast_to(idx_y.ravel(), (6,6))
# this should be the same as
x,y = np.meshgrid(idx_x, idx_y)
Now reshape the mask to the broadcasted indices and use it to select
mask = mask.reshape(6,6)
a[..., x[mask], y[mask]] = 1
The assignment now works, but I am not sure if this is the exact assignment you wanted.
Ok apparently I am making things complicated. No need to combine the indexing. The following code solves the problem elegantly:
b = a[..., idx_y, idx_x]
b[mask] = 1
a[..., idx_y, idx_x] = b
print(a[..., idx_y, idx_x][mask]) # all 1s
EDIT: Use #Kevin's solution which actually gets the dimensions correct!
I haven't tried it specifically on your sample code but I had a similar issue before. I think I solved it by applying the mask to the indices instead, something like:
a[..., idx_y[mask], idx_x[mask]] = 1
-that way, numpy can assign the values to the a array correctly.
EDIT2: Post some test code as comments remove formatting.
a = np.arange(27).reshape([3, 3, 3])
ind_x = np.array([[0, 0], [1, 2]])
ind_y = np.array([[1, 2], [1, 1]])
x = np.broadcast_to(ind_x.ravel(), (4, 4))
y = np.broadcast_to(ind_y.ravel(), (4, 4)).T
# x1, y2 = np.meshgrid(ind_x, ind_y) # above should be the same as this
mask = a[:, ind_y, ind_x] % 2 == 0 # what should this reshape to?
# a[..., x[mask], y[mask]] = 1 # Then you can mask away (may also need to reshape a or the masked x or y)
Let's say I have a two-dimensional array
import numpy as np
a = np.array([[1, 1, 1], [2,2,2], [3,3,3]])
and I would like to replace the third vector (in the second dimension) with zeros. I would do
a[:, 2] = np.array([0, 0, 0])
But what if I would like to be able to do that programmatically? I mean, let's say that variable x = 1 contained the dimension on which I wanted to do the replacing. How would the function replace(arr, dimension, value, arr_to_be_replaced) have to look if I wanted to call it as replace(a, x, 2, np.array([0, 0, 0])?
numpy has a similar function, insert. However, it doesn't replace at dimension i, it returns a copy with an additional vector.
All solutions are welcome, but I do prefer a solution that doesn't recreate the array as to save memory.
arr[:, 1]
is basically shorthand for
arr[(slice(None), 1)]
that is, a tuple with slice elements and integers.
Knowing that, you can construct a tuple of slice objects manually, adjust the values depending on an axis parameter and use that as your index. So for
import numpy as np
arr = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]])
axis = 1
idx = 2
arr[:, idx] = np.array([0, 0, 0])
# ^- axis position
you can use
slices = [slice(None)] * arr.ndim
slices[axis] = idx
arr[tuple(slices)] = np.array([0, 0, 0])
I have N, 2x4 arrays stored in a (2x4xN) array J. I am trying to calculate the pseudoinverse for each of the N, 2x4 arrays, and save the pseudoinverses to a (N x 4 x 2) array J_pinv.
What I'm currently doing:
J_pinvs = np.zeros((N, 4, 2))
for i in range(N):
J_pinvs[i, :, :] = np.transpose(J[:, :, i]) # np.linalg.inv(J[:, :, i] # J[:, :, i].transpose())
This works but I would like to speed up the compute time as this will be running in a layer of a neural network so I would like to make it as fast as possible.
What I've tried:
J_pinvs = np.zeros((N, 4, 2))
J_pinvs2[:, :, :] = np.transpose(J[:, :, :]) # np.linalg.inv(J[:, :, :] # J[:, :, :].transpose())
Generates the error:
<ipython-input-87-d8ee1ba2ae5e> in <module>
1 J_pinvs2 = np.zeros((4, 2, 3))
----> 2 J_pinvs2[:, :, :] = np.transpose(J[:, :, :]) # np.linalg.inv(J[:, :, :] # J[:, :, :].transpose())
ValueError: matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 4 is different from 3)
Is there a way to do this with slicing so that I don't need to use an iterator? I'm having trouble finding anything online. Any help/suggestions would be appretiated!
Thanks,
JM
I think you need to specify how to transpose a 3-D array:
np.linalg.inv(a # a.transpose(0,2,1))
will work. As oppose to
# sample data
a = np.arange(24).reshape(-1,2,4)
a.shape
# (3, 2, 4)
a.transpose().shape
# (4, 2, 3)
and
a # a.transpose()
will not work.
Finally, the whole script should be:
a.transpose(0,2,1) # np.linalg.inv(a # a.transpose(0,2,1))
I would like to do something like this piece of Numpy code, just in TensorFlow:
a = np.zeros([5, 2])
idx = np.random.randint(0, 2, (5,))
row_idx = np.arange(5)
a[row_idx, idx] = row_idx
meaning indexing all rows of a 2D tensor with another tensor and then assigning a tensor to that. I am absolutely clueless on how to achieve this.
What I can do so far in Tensorflow is the following
a = tf.Variable(tf.zeros((5, 2)))
idx = tf.constant([0, 1, 1, 0, 1])
row_idx = tf.range(5)
indices = tf.transpose([row_idx, idx])
r = tf.gather_nd(a, indices)
tf.assign(r, row_idx) # This line does not work
When I try to execute this, I get the following error in the last line:
AttributeError: 'Tensor' object has no attribute 'assign'
Is there a way around this? There must be some nice way to do this, I don't want to iterate with for loops over the data and manually assign this on a per-element basis. I know that right now array-indexing is not as advanced as Numpy's functionality, but this should still be possible somehow.
What you are trying to do is frequently done with tf.scatter_nd_update. However, that is most times not the right way to do it, you should not need a variable, just another tensor produced from the original tensor with some replaced values. Unfortunately, there is no straightforward way to do this in general. If your original tensor is really all zeros, then you can simply use tf.scatter_nd:
import tensorflow as tf
idx = tf.constant([0, 1, 1, 0, 1])
row_idx = tf.range(5)
indices = tf.stack([row_idx, idx], axis=1)
a = tf.scatter_nd(indices, row_idx, (5, 2))
with tf.Session() as sess:
print(sess.run(a))
# [[0 0]
# [0 1]
# [0 2]
# [3 0]
# [0 4]]
However, if the initial tensor is not all zeros, it is more complicated. One way to do that is do the same as above, then make a mask for the updated, and select between the original and the update according to the mask:
import tensorflow as tf
a = tf.ones((5, 2), dtype=tf.int32)
idx = tf.constant([0, 1, 1, 0, 1])
row_idx = tf.range(5)
indices = tf.stack([row_idx, idx], axis=1)
a_update = tf.scatter_nd(indices, row_idx, (5, 2))
update_mask = tf.scatter_nd(indices, tf.ones_like(row_idx, dtype=tf.bool), (5, 2))
a = tf.where(update_mask, a_update, a)
with tf.Session() as sess:
print(sess.run(a))
# [[0 1]
# [1 1]
# [1 2]
# [3 1]
# [1 4]]
I don't know about previous versions, but in Tensorflow 2.1 you can use tf.tensor_scatter_nd_update to do what you want in a single-line. In your code example, you could do:
a = tf.zeros((5, 2), dtype=tf.int32)
idx = tf.constant([0, 1, 1, 0, 1])
row_idx = tf.range(5)
indices = tf.transpose([row_idx, idx])
a = tf.tensor_scatter_nd_update(a, indices, row_idx)
I have an NxMx3 numpy array with dtype=object. I also have a function f(a,b,c) which takes the three elements in the last axis of this array and returns a np.int32. My question is how do I apply f to my NxMx3 array to yield an NxM array with dtype=np.int32?
My current solution is to use
newarr = np.fromfunction(lambda i,j: f(arr[i,j,0], arr[i,j,1], arr[i,j,2]),
arr.shape[:2], dtype=np.int)
although this is a little more verbose than I had hoped.
You could use vectorize:
np.vectorize(f, otypes=[np.int32])(arr[:, :, 0], arr[:, :, 1], arr[:, :, 2])
This can be simplified by axis rolling and iteration:
np.vectorize(f, otypes=[np.int32])(*np.rollaxis(arr, 2, 0))
Alternatively you can split the array explicitly with dsplit:
np.vectorize(f, otypes=[np.int32])(*np.dsplit(arr, 3))[..., 0]
or
np.vectorize(f, otypes=[np.int32])(*np.dsplit(arr, 3)).reshape(arr.shape[:-1])
or
np.vectorize(f, otypes=[np.int32])(*np.dsplit(arr, 3)).squeeze()
However, apply_along_axis is probably simpler:
np.apply_along_axis(lambda x: f(*x), 2, arr)