Related
I already know that Numpy "double-slice" with fancy indexing creates copies instead of views, and the solution seems to be to convert them to one single slice (e.g. This question). However, I am facing this particular problem where i need to deal with an integer indexing followed by boolean indexing and I am at a loss what to do. The problem (simplified) is as follows:
a = np.random.randn(2, 3, 4, 4)
idx_x = np.array([[1, 2], [1, 2], [1, 2]])
idx_y = np.array([[0, 0], [1, 1], [2, 2]])
print(a[..., idx_y, idx_x].shape) # (2, 3, 3, 2)
mask = (np.random.randn(2, 3, 3, 2) > 0)
a[..., idx_y, idx_x][mask] = 1 # assignment doesn't work
How can I make the assignment work?
Not sure, but an idea is to do the broadcasting manually and adding the mask respectively just like Tim suggests. idx_x and idx_y both have the same shape (3,2) which will be broadcasted to the shape (6,6) from the cartesian product (3*2)^2.
x = np.broadcast_to(idx_x.ravel(), (6,6))
y = np.broadcast_to(idx_y.ravel(), (6,6))
# this should be the same as
x,y = np.meshgrid(idx_x, idx_y)
Now reshape the mask to the broadcasted indices and use it to select
mask = mask.reshape(6,6)
a[..., x[mask], y[mask]] = 1
The assignment now works, but I am not sure if this is the exact assignment you wanted.
Ok apparently I am making things complicated. No need to combine the indexing. The following code solves the problem elegantly:
b = a[..., idx_y, idx_x]
b[mask] = 1
a[..., idx_y, idx_x] = b
print(a[..., idx_y, idx_x][mask]) # all 1s
EDIT: Use #Kevin's solution which actually gets the dimensions correct!
I haven't tried it specifically on your sample code but I had a similar issue before. I think I solved it by applying the mask to the indices instead, something like:
a[..., idx_y[mask], idx_x[mask]] = 1
-that way, numpy can assign the values to the a array correctly.
EDIT2: Post some test code as comments remove formatting.
a = np.arange(27).reshape([3, 3, 3])
ind_x = np.array([[0, 0], [1, 2]])
ind_y = np.array([[1, 2], [1, 1]])
x = np.broadcast_to(ind_x.ravel(), (4, 4))
y = np.broadcast_to(ind_y.ravel(), (4, 4)).T
# x1, y2 = np.meshgrid(ind_x, ind_y) # above should be the same as this
mask = a[:, ind_y, ind_x] % 2 == 0 # what should this reshape to?
# a[..., x[mask], y[mask]] = 1 # Then you can mask away (may also need to reshape a or the masked x or y)
Let's say I have a two-dimensional array
import numpy as np
a = np.array([[1, 1, 1], [2,2,2], [3,3,3]])
and I would like to replace the third vector (in the second dimension) with zeros. I would do
a[:, 2] = np.array([0, 0, 0])
But what if I would like to be able to do that programmatically? I mean, let's say that variable x = 1 contained the dimension on which I wanted to do the replacing. How would the function replace(arr, dimension, value, arr_to_be_replaced) have to look if I wanted to call it as replace(a, x, 2, np.array([0, 0, 0])?
numpy has a similar function, insert. However, it doesn't replace at dimension i, it returns a copy with an additional vector.
All solutions are welcome, but I do prefer a solution that doesn't recreate the array as to save memory.
arr[:, 1]
is basically shorthand for
arr[(slice(None), 1)]
that is, a tuple with slice elements and integers.
Knowing that, you can construct a tuple of slice objects manually, adjust the values depending on an axis parameter and use that as your index. So for
import numpy as np
arr = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]])
axis = 1
idx = 2
arr[:, idx] = np.array([0, 0, 0])
# ^- axis position
you can use
slices = [slice(None)] * arr.ndim
slices[axis] = idx
arr[tuple(slices)] = np.array([0, 0, 0])
I have a np.ndarray with the shape (24, 3). I want to flatten this array but in a rathor unusual way. I would like to have [0:8, 0] then [0:8, 1] then [0:8, 2] then [8:16, 0] and so on.
Of course i could do it the brute force way but maybe there is a more elegant and efficient solution to this problem.
new_array = np.array([])
np.append(new_array, old_array[0:8, 0])
np.append(new_array, old_array[0:8, 1])
np.append(new_array, old_array[0:8, 2])
np.append(new_array, old_array[8:16, 0])
np.append(new_array, old_array[8:16, 1])
np.append(new_array, old_array[8:16, 2])
np.append(new_array, old_array[16:24, 0])
np.append(new_array, old_array[16:24, 1])
np.append(new_array, old_array[16:24, 2])
Reshape, permute and reshape -
n = 8 # cut length along first axis
new_array = old_array.reshape(-1,n,old_array.shape[1]).swapaxes(1,2).ravel()
I have a matrix (2d numpy ndarray, to be precise):
A = np.array([[4, 0, 0],
[1, 2, 3],
[0, 0, 5]])
And I want to roll each row of A independently, according to roll values in another array:
r = np.array([2, 0, -1])
That is, I want to do this:
print np.array([np.roll(row, x) for row,x in zip(A, r)])
[[0 0 4]
[1 2 3]
[0 5 0]]
Is there a way to do this efficiently? Perhaps using fancy indexing tricks?
Sure you can do it using advanced indexing, whether it is the fastest way probably depends on your array size (if your rows are large it may not be):
rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]
# Use always a negative shift, so that column_indices are valid.
# (could also use module operation)
r[r < 0] += A.shape[1]
column_indices = column_indices - r[:, np.newaxis]
result = A[rows, column_indices]
numpy.lib.stride_tricks.as_strided stricks (abbrev pun intended) again!
Speaking of fancy indexing tricks, there's the infamous - np.lib.stride_tricks.as_strided. The idea/trick would be to get a sliced portion starting from the first column until the second last one and concatenate at the end. This ensures that we can stride in the forward direction as needed to leverage np.lib.stride_tricks.as_strided and thus avoid the need of actually rolling back. That's the whole idea!
Now, in terms of actual implementation we would use scikit-image's view_as_windows to elegantly use np.lib.stride_tricks.as_strided under the hoods. Thus, the final implementation would be -
from skimage.util.shape import view_as_windows as viewW
def strided_indexing_roll(a, r):
# Concatenate with sliced to cover all rolls
a_ext = np.concatenate((a,a[:,:-1]),axis=1)
# Get sliding windows; use advanced-indexing to select appropriate ones
n = a.shape[1]
return viewW(a_ext,(1,n))[np.arange(len(r)), (n-r)%n,0]
Here's a sample run -
In [327]: A = np.array([[4, 0, 0],
...: [1, 2, 3],
...: [0, 0, 5]])
In [328]: r = np.array([2, 0, -1])
In [329]: strided_indexing_roll(A, r)
Out[329]:
array([[0, 0, 4],
[1, 2, 3],
[0, 5, 0]])
Benchmarking
# #seberg's solution
def advindexing_roll(A, r):
rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]
r[r < 0] += A.shape[1]
column_indices = column_indices - r[:,np.newaxis]
return A[rows, column_indices]
Let's do some benchmarking on an array with large number of rows and columns -
In [324]: np.random.seed(0)
...: a = np.random.rand(10000,1000)
...: r = np.random.randint(-1000,1000,(10000))
# #seberg's solution
In [325]: %timeit advindexing_roll(a, r)
10 loops, best of 3: 71.3 ms per loop
# Solution from this post
In [326]: %timeit strided_indexing_roll(a, r)
10 loops, best of 3: 44 ms per loop
In case you want more general solution (dealing with any shape and with any axis), I modified #seberg's solution:
def indep_roll(arr, shifts, axis=1):
"""Apply an independent roll for each dimensions of a single axis.
Parameters
----------
arr : np.ndarray
Array of any shape.
shifts : np.ndarray
How many shifting to use for each dimension. Shape: `(arr.shape[axis],)`.
axis : int
Axis along which elements are shifted.
"""
arr = np.swapaxes(arr,axis,-1)
all_idcs = np.ogrid[[slice(0,n) for n in arr.shape]]
# Convert to a positive shift
shifts[shifts < 0] += arr.shape[-1]
all_idcs[-1] = all_idcs[-1] - shifts[:, np.newaxis]
result = arr[tuple(all_idcs)]
arr = np.swapaxes(result,-1,axis)
return arr
I implement a pure numpy.lib.stride_tricks.as_strided solution as follows
from numpy.lib.stride_tricks import as_strided
def custom_roll(arr, r_tup):
m = np.asarray(r_tup)
arr_roll = arr[:, [*range(arr.shape[1]),*range(arr.shape[1]-1)]].copy() #need `copy`
strd_0, strd_1 = arr_roll.strides
n = arr.shape[1]
result = as_strided(arr_roll, (*arr.shape, n), (strd_0 ,strd_1, strd_1))
return result[np.arange(arr.shape[0]), (n-m)%n]
A = np.array([[4, 0, 0],
[1, 2, 3],
[0, 0, 5]])
r = np.array([2, 0, -1])
out = custom_roll(A, r)
Out[789]:
array([[0, 0, 4],
[1, 2, 3],
[0, 5, 0]])
By using a fast fourrier transform we can apply a transformation in the frequency domain and then use the inverse fast fourrier transform to obtain the row shift.
So this is a pure numpy solution that take only one line:
import numpy as np
from numpy.fft import fft, ifft
# The row shift function using the fast fourrier transform
# rshift(A,r) where A is a 2D array, r the row shift vector
def rshift(A,r):
return np.real(ifft(fft(A,axis=1)*np.exp(2*1j*np.pi/A.shape[1]*r[:,None]*np.r_[0:A.shape[1]][None,:]),axis=1).round())
This will apply a left shift, but we can simply negate the exponential exponant to turn the function into a right shift function:
ifft(fft(...)*np.exp(-2*1j...)
It can be used like that:
# Example:
A = np.array([[1,2,3,4],
[1,2,3,4],
[1,2,3,4]])
r = np.array([1,-1,3])
print(rshift(A,r))
Building on divakar's excellent answer, you can apply this logic to 3D array easily (which was the problematic that brought me here in the first place). Here's an example - basically flatten your data, roll it & reshape it after::
def applyroll_30(cube, threshold=25, offset=500):
flattened_cube = cube.copy().reshape(cube.shape[0]*cube.shape[1], cube.shape[2])
roll_matrix = calc_roll_matrix_flattened(flattened_cube, threshold, offset)
rolled_cube = strided_indexing_roll(flattened_cube, roll_matrix, cube_shape=cube.shape)
rolled_cube = triggered_cube.reshape(cube.shape[0], cube.shape[1], cube.shape[2])
return rolled_cube
def calc_roll_matrix_flattened(cube_flattened, threshold, offset):
""" Calculates the number of position along time axis we need to shift
elements in order to trig the data.
We return a 1D numpy array of shape (X*Y, time) elements
"""
# armax(...) finds the position in the cube (3d) where we are above threshold
roll_matrix = np.argmax(cube_flattened > threshold, axis=1) + offset
# ensure we don't have index out of bound
roll_matrix[roll_matrix>cube_flattened.shape[1]] = cube_flattened.shape[1]
return roll_matrix
def strided_indexing_roll(cube_flattened, roll_matrix_flattened, cube_shape):
# Concatenate with sliced to cover all rolls
# otherwise we shift in the wrong direction for my application
roll_matrix_flattened = -1 * roll_matrix_flattened
a_ext = np.concatenate((cube_flattened, cube_flattened[:, :-1]), axis=1)
# Get sliding windows; use advanced-indexing to select appropriate ones
n = cube_flattened.shape[1]
result = viewW(a_ext,(1,n))[np.arange(len(roll_matrix_flattened)), (n - roll_matrix_flattened) % n, 0]
result = result.reshape(cube_shape)
return result
Divakar's answer doesn't do justice to how much more efficient this is on large cube of data. I've timed it on a 400x400x2000 data formatted as int8. An equivalent for-loop does ~5.5seconds, Seberg's answer ~3.0seconds and strided_indexing.... ~0.5second.
I have an numpy array of size
arr.size = (200, 600, 20).
I want to compute scipy.stats.kendalltau on every pairwise combination of the last two dimensions. For example:
kendalltau(arr[:, 0, 0], arr[:, 1, 0])
kendalltau(arr[:, 0, 0], arr[:, 1, 1])
kendalltau(arr[:, 0, 0], arr[:, 1, 2])
...
kendalltau(arr[:, 0, 0], arr[:, 2, 0])
kendalltau(arr[:, 0, 0], arr[:, 2, 1])
kendalltau(arr[:, 0, 0], arr[:, 2, 2])
...
...
kendalltau(arr[:, 598, 20], arr[:, 599, 20])
such that I cover all combinations of arr[:, i, xi] with arr[:, j, xj] with i < j and xi in [0,20), xj in [0, 20). This is (600 choose 2) * 400 individual calculations, but since each takes about 0.002 s on my machine, it shouldn't take much longer than a day with the multiprocessing module.
What's the best way to go about iterating over these columns (with i<j)? I figure I should avoid something like
for i in range(600):
for j in range(i+1, 600):
for xi in range(20):
for xj in range(20):
What is the most numpythonic way of doing this?
Edit: I changed the title since Kendall Tau isn't really important to the question. I realize I could also do something like
import itertools as it
for i, j in it.combinations(xrange(600), 2):
for xi, xj in product(xrange(20), xrange(20)):
but there's got to be a better, more vectorized way with numpy.
The general way of vectorizing something like this is to use broadcasting to create the cartesian product of the set with itself. In your case you have an array arr of shape (200, 600, 20), so you would take two views of it:
arr_x = arr[:, :, np.newaxis, np.newaxis, :] # shape (200, 600, 1, 1, 20)
arr_y = arr[np.newaxis, np.newaxis, :, :, :] # shape (1, 1, 200, 600, 20)
The above two lines have been expanded for clarity, but I would normally write the equivalent:
arr_x = arr[:, :, None, None]
arr_y = arr
If you have a vectorized function, f, that did broadcasting on all but the last dimension, you could then do:
out = f(arr[:, :, None, None], arr)
And then out would be an array of shape (200, 600, 200, 600), with out[i, j, k, l] holding the value of f(arr[i, j], arr[k, l]). For instance, if you wanted to compute all the pairwise inner products, you could do:
from numpy.core.umath_tests import inner1d
out = inner1d(arr[:, :, None, None], arr)
Unfortunately scipy.stats.kendalltau is not vectorized like this. According to the docs
"If arrays are not 1-D, they will be flattened to 1-D."
So you cannot go about it like this, and you are going to wind up doing Python nested loops, be it explicitly writing them out, using itertools or disguising it under np.vectorize. That's going to be slow, because of the iteration on Python variables, and because you have a Python function per iteration step, which are both expensive actions.
Do note that, when you can go the vectorized way, there is an obvious drawback: if your function is commutative, i.e. if f(a, b) == f(b, a), then you are doing twice the computations needed. Depending on how expensive your actual computation is, this is very often offset by the increase in speed from not having any Python loops or function calls.
If you don't want to use recursion you should generally be using itertools.combinations. There is no specific reason (afaik) why this should cause your code to run slower. The computationally-intensive parts are still being handled by numpy. Itertools also has the advantage of readability.