I need to create a sort of similarity matrix based on user_id values. I am currently using Pandas to store the majority of my data, but I know that iteration is very anti-pattern, so I am considering creating a set/dictionary nest to store the similarities, similar to some of the proposed structures here
I would only be storing N nearest similarities, so it would amount to something like this:
{
'user_1' : {'user_2':0.5, 'user_4':0.9, 'user_3':1.0},
'user_2' : ...
}
It would be allowing me to access a neighbourhood by doing dict_name[user_id] quite easily.
Essentially the outermost dictionary key would hold a user_id which returns another dictionary of its N closest neighbours with user_id- similarity_value key-value sets.
For more context, I'm just writing a simple KNN recommender. I am doing it from scratch as I've tried using Surpriselib and sklearn but they don't have the context-aware flexibility I require.
This seems like a reasonable way to store these values to me, but is it very anti-pythonic, or should I be looking to do this using some other structures (e.g. NumPy or Pandas or something else I don't yet know about)?
As the comment says, there is nothing inherently wrong or anti-pythonic with using (one level of) nested dictionaries and writing everything from scratch.
Performance-wise you can probably beat your self-written solution if you use an existing data structure whose API works well with the transformations/operations you intend to perform on them. Numpy/Pandas only will help if your operations can be expressed as vectorized operations that operate on all (pairs of) elements along a common axis, e.g. all users in your top-level dictionary.
I'm studying and practicing Python right now. I'm kinda scared by the concept of classes in it and I'm stuck wondering how to implement data structures like Linked Lists, Graphs and Trees.
I've heard from many that these are the most important data structures asked in interviews and coding competitions.
So my question is, Is there a way to implement all the said data structures without using classes and just by using predefined data structures like lists, dictionaries etc?
If we are being pedantic, everything in python is a class, so you can't avoid them. If you are concerned about everything that goes into creating your own class, like which methods should be defined where, that's something we can focus on. In fact, there is no general consensus on the boundaries to any given class and popular programs like C and Go don't even have them.
An alternative is to just use a dict to hold key/value pairs. Roughly, a class is just a dictionary with associated methods anyway. Dictionary keys can hold a wide variety of objects (as long as they are hashable) whereas class attributes must be strings and are further restricted to fit lexicographically in a program. A linked list for instance could be { "next object":obj, "previous object":obj, "item":obj } or even a list [obj, obj, obj] and your code remembers what those indexes are.
But classes are very convenient, especially when implementing other data structures. It makes sense that methods manipulating a linked list node would be on the node itself. There isn't much to gain avoiding classes when they are reasonable data structures to use.
There are plenty of modules out there that implemente linked lists, trees and graphs. Unless this is an exercise in learning data structures, some time spent with your favorite search engine is the best option of all.
Why doesn't Pandas build DataFrames directly from lists? Why was such a thing as a series created in the first place?
Or: If the data in a DataFrame is actually stored in memory as a collection of Series, why not just use a collection of lists?
Yet another way to ask the same question: what's the purpose of Series over lists?
This isn't going to be a very complete answer, but hopefully is an intuitive "general" answer.
Pandas doesn't use a list as the "core" unit that makes up a DataFrame because Series objects make assumptions that lists do not. A list in python makes very little assumptions about what is inside, it could be pretty much anything, which makes it great as a core component of python.
However, if you want to build a more specialized package that gives you extra functionality liked Pandas, then you want to create your own "core" data object and start building extra functionality on top of that. Compared with lists, you can do a lot more with a custom Series object (as witnessed by pulling a single column from a DataFrame and seeing what methods are available to the output).
I've had some really awesome help on my previous questions for detecting paws and toes within a paw, but all these solutions only work for one measurement at a time.
Now I have data that consists off:
about 30 dogs;
each has 24 measurements (divided into several subgroups);
each measurement has at least 4 contacts (one for each paw) and
each contact is divided into 5 parts and
has several parameters, like contact time, location, total force etc.
Obviously sticking everything into one big object isn't going to cut it, so I figured I needed to use classes instead of the current slew of functions. But even though I've read Learning Python's chapter about classes, I fail to apply it to my own code (GitHub link)
I also feel like it's rather strange to process all the data every time I want to get out some information. Once I know the locations of each paw, there's no reason for me to calculate this again. Furthermore, I want to compare all the paws of the same dog to determine which contact belongs to which paw (front/hind, left/right). This would become a mess if I continue using only functions.
So now I'm looking for advice on how to create classes that will let me process my data (link to the zipped data of one dog) in a sensible fashion.
How to design a class.
Write down the words. You started to do this. Some people don't and wonder why they have problems.
Expand your set of words into simple statements about what these objects will be doing. That is to say, write down the various calculations you'll be doing on these things. Your short list of 30 dogs, 24 measurements, 4 contacts, and several "parameters" per contact is interesting, but only part of the story. Your "locations of each paw" and "compare all the paws of the same dog to determine which contact belongs to which paw" are the next step in object design.
Underline the nouns. Seriously. Some folks debate the value of this, but I find that for first-time OO developers it helps. Underline the nouns.
Review the nouns. Generic nouns like "parameter" and "measurement" need to be replaced with specific, concrete nouns that apply to your problem in your problem domain. Specifics help clarify the problem. Generics simply elide details.
For each noun ("contact", "paw", "dog", etc.) write down the attributes of that noun and the actions in which that object engages. Don't short-cut this. Every attribute. "Data Set contains 30 Dogs" for example is important.
For each attribute, identify if this is a relationship to a defined noun, or some other kind of "primitive" or "atomic" data like a string or a float or something irreducible.
For each action or operation, you have to identify which noun has the responsibility, and which nouns merely participate. It's a question of "mutability". Some objects get updated, others don't. Mutable objects must own total responsibility for their mutations.
At this point, you can start to transform nouns into class definitions. Some collective nouns are lists, dictionaries, tuples, sets or namedtuples, and you don't need to do very much work. Other classes are more complex, either because of complex derived data or because of some update/mutation which is performed.
Don't forget to test each class in isolation using unittest.
Also, there's no law that says classes must be mutable. In your case, for example, you have almost no mutable data. What you have is derived data, created by transformation functions from the source dataset.
The following advices (similar to #S.Lott's advice) are from the book, Beginning Python: From Novice to Professional
Write down a description of your problem (what should the problem do?). Underline all the nouns, verbs, and adjectives.
Go through the nouns, looking for potential classes.
Go through the verbs, looking for potential methods.
Go through the adjectives, looking for potential attributes
Allocate methods and attributes to your classes
To refine the class, the book also advises we can do the following:
Write down (or dream up) a set of use cases—scenarios of how your program may be used. Try to cover all the functionally.
Think through every use case step by step, making sure that everything we need is covered.
I like the TDD approach...
So start by writing tests for what you want the behaviour to be. And write code that passes. At this point, don't worry too much about design, just get a test suite and software that passes. Don't worry if you end up with a single big ugly class, with complex methods.
Sometimes, during this initial process, you'll find a behaviour that is hard to test and needs to be decomposed, just for testability. This may be a hint that a separate class is warranted.
Then the fun part... refactoring. After you have working software you can see the complex pieces. Often little pockets of behaviour will become apparent, suggesting a new class, but if not, just look for ways to simplify the code. Extract service objects and value objects. Simplify your methods.
If you're using git properly (you are using git, aren't you?), you can very quickly experiment with some particular decomposition during refactoring, and then abandon it and revert back if it doesn't simplify things.
By writing tested working code first you should gain an intimate insight into the problem domain that you couldn't easily get with the design-first approach. Writing tests and code push you past that "where do I begin" paralysis.
The whole idea of OO design is to make your code map to your problem, so when, for example, you want the first footstep of a dog, you do something like:
dog.footstep(0)
Now, it may be that for your case you need to read in your raw data file and compute the footstep locations. All this could be hidden in the footstep() function so that it only happens once. Something like:
class Dog:
def __init__(self):
self._footsteps=None
def footstep(self,n):
if not self._footsteps:
self.readInFootsteps(...)
return self._footsteps[n]
[This is now a sort of caching pattern. The first time it goes and reads the footstep data, subsequent times it just gets it from self._footsteps.]
But yes, getting OO design right can be tricky. Think more about the things you want to do to your data, and that will inform what methods you'll need to apply to what classes.
After skimming your linked code, it seems to me that you are better off not designing a Dog class at this point. Rather, you should use Pandas and dataframes. A dataframe is a table with columns. You dataframe would have columns such as: dog_id, contact_part, contact_time, contact_location, etc.
Pandas uses Numpy arrays behind the scenes, and it has many convenience methods for you:
Select a dog by e.g. : my_measurements['dog_id']=='Charly'
save the data: my_measurements.save('filename.pickle')
Consider using pandas.read_csv() instead of manually reading the text files.
Writing out your nouns, verbs, adjectives is a great approach, but I prefer to think of class design as asking the question what data should be hidden?
Imagine you had a Query object and a Database object:
The Query object will help you create and store a query -- store, is the key here, as a function could help you create one just as easily. Maybe you could stay: Query().select('Country').from_table('User').where('Country == "Brazil"'). It doesn't matter exactly the syntax -- that is your job! -- the key is the object is helping you hide something, in this case the data necessary to store and output a query. The power of the object comes from the syntax of using it (in this case some clever chaining) and not needing to know what it stores to make it work. If done right the Query object could output queries for more then one database. It internally would store a specific format but could easily convert to other formats when outputting (Postgres, MySQL, MongoDB).
Now let's think through the Database object. What does this hide and store? Well clearly it can't store the full contents of the database, since that is why we have a database! So what is the point? The goal is to hide how the database works from people who use the Database object. Good classes will simplify reasoning when manipulating internal state. For this Database object you could hide how the networking calls work, or batch queries or updates, or provide a caching layer.
The problem is this Database object is HUGE. It represents how to access a database, so under the covers it could do anything and everything. Clearly networking, caching, and batching are quite hard to deal with depending on your system, so hiding them away would be very helpful. But, as many people will note, a database is insanely complex, and the further from the raw DB calls you get, the harder it is to tune for performance and understand how things work.
This is the fundamental tradeoff of OOP. If you pick the right abstraction it makes coding simpler (String, Array, Dictionary), if you pick an abstraction that is too big (Database, EmailManager, NetworkingManager), it may become too complex to really understand how it works, or what to expect. The goal is to hide complexity, but some complexity is necessary. A good rule of thumb is to start out avoiding Manager objects, and instead create classes that are like structs -- all they do is hold data, with some helper methods to create/manipulate the data to make your life easier. For example, in the case of EmailManager start with a function called sendEmail that takes an Email object. This is a simple starting point and the code is very easy to understand.
As for your example, think about what data needs to be together to calculate what you are looking for. If you wanted to know how far an animal was walking, for example, you could have AnimalStep and AnimalTrip (collection of AnimalSteps) classes. Now that each Trip has all the Step data, then it should be able to figure stuff out about it, perhaps AnimalTrip.calculateDistance() makes sense.
I have a scientific data management problem which seems general, but I can't find an existing solution or even a description of it, which I have long puzzled over. I am about to embark on a major rewrite (python) but I thought I'd cast about one last time for existing solutions, so I can scrap my own and get back to the biology, or at least learn some appropriate language for better googling.
The problem:
I have expensive (hours to days to calculate) and big (GB's) data attributes that are typically built as transformations of one or more other data attributes. I need to keep track of exactly how this data is built so I can reuse it as input for another transformation if it fits the problem (built with right specification values) or construct new data as needed. Although it shouldn't matter, I typically I start with 'value-added' somewhat heterogeneous molecular biology info, for example, genomes with genes and proteins annotated by other processes by other researchers. I need to combine and compare these data to make my own inferences. A number of intermediate steps are often required, and these can be expensive. In addition, the end results can become the input for additional transformations. All of these transformations can be done in multiple ways: restricting with different initial data (eg using different organisms), by using different parameter values in the same inferences, or by using different inference models, etc. The analyses change frequently and build on others in unplanned ways. I need to know what data I have (what parameters or specifications fully define it), both so I can reuse it if appropriate, as well as for general scientific integrity.
My efforts in general:
I design my python classes with the problem of description in mind. All data attributes built by a class object are described by a single set of parameter values. I call these defining parameters or specifications the 'def_specs', and these def_specs with their values the 'shape' of the data atts. The entire global parameter state for the process might be quite large (eg a hundred parameters), but the data atts provided by any one class require only a small number of these, at least directly. The goal is to check whether previously built data atts are appropriate by testing if their shape is a subset of the global parameter state.
Within a class it is easy to find the needed def_specs that define the shape by examining the code. The rub arises when a module needs a data att from another module. These data atts will have their own shape, perhaps passed as args by the calling object, but more often filtered from the global parameter state. The calling class should be augmented with the shape of its dependencies in order to maintain a complete description of its data atts.
In theory this could be done manually by examining the dependency graph, but this graph can get deep, and there are many modules, which I am constantly changing and adding, and ... I'm too lazy and careless to do it by hand.
So, the program dynamically discovers the complete shape of the data atts by tracking calls to other classes attributes and pushing their shape back up to the caller(s) through a managed stack of __get__ calls. As I rewrite I find that I need to strictly control attribute access to my builder classes to prevent arbitrary info from influencing the data atts. Fortunately python is making this easy with descriptors.
I store the shape of the data atts in a db so that I can query whether appropriate data (i.e. its shape is a subset of the current parameter state) already exists. In my rewrite I am moving from mysql via the great SQLAlchemy to an object db (ZODB or couchdb?) as the table for each class has to be altered when additional def_specs are discovered, which is a pain, and because some of the def_specs are python lists or dicts, which are a pain to translate to sql.
I don't think this data management can be separated from my data transformation code because of the need for strict attribute control, though I am trying to do so as much as possible. I can use existing classes by wrapping them with a class that provides their def_specs as class attributes, and db management via descriptors, but these classes are terminal in that no further discovery of additional dependency shape can take place.
If the data management cannot easily be separated from the data construction, I guess it is unlikely that there is an out of the box solution but a thousand specific ones. Perhaps there is an applicable pattern? I'd appreciate any hints at how to go about looking or better describing the problem. To me it seems a general issue, though managing deeply layered data is perhaps at odds with the prevailing winds of the web.
I don't have specific python-related suggestions for you, but here are a few thoughts:
You're encountering a common challenge in bioinformatics. The data is large, heterogeneous, and comes in constantly changing formats as new technologies are introduced. My advice is to not overthink your pipelines, as they're likely to be changing tomorrow. Choose a few well defined file formats, and massage incoming data into those formats as often as possible. In my experience, it's also usually best to have loosely coupled tools that do one thing well, so that you can chain them together for different analyses quickly.
You might also consider taking a version of this question over to the bioinformatics stack exchange at http://biostar.stackexchange.com/
ZODB has not been designed to handle massive data, it is just for web-based applications and in any case it is a flat-file based database.
I recommend you to try PyTables, a python library to handle HDF5 files, which is a format used in astronomy and physics to store results from big calculations and simulations. It can be used as an hierarchical-like database and has also an efficient way to pickle python objects. By the way, the author of pytables explained that ZOdb was too slow for what he needed to do, and I can confirm you that. If you are interested in HDF5, there is also another library, h5py.
As a tool for managing the versioning of the different calculations you have, you can have a try at sumatra, which is something like an extension to git/trac but designed for simulations.
You should ask this question on biostar, you will find better answers there.