What is the effect of pydevd.py's -- pydev's debugger used by Eclipsed and Pycahrm -- effect on python's multiprocessing & threading?
When I start my python server -- which uses both multiprocessing & threading -- without debugging, it crashes on startup with no helpful traceback. However, when I run with Pycharm's debugger, the process starts up and functions properly.
So what would be causing this difference in performance? Could it be serialization of Process() or imposing of some orders on Thread()?
Well, it may be that you have some racing condition and just by having the debugger running things run in a different order (it does some monkey-patching to auto-attach to subprocesses and it does many things to reset its state in the new process).
Note that using threading and multiprocessing at the same time can be very tricky if you're starting your sub-processes with a fork on Linux (to resume, deadlocks are expected on corner cases if you do that) -- if you're on Python 2 there's no workaround, but if you're on Python 3 you should be able to set the start method to spawn: https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method.
I realize there are use cases where the fork method may be preferred vs spawn (to avoid copying too much memory on some use-cases). If that's your use case you should not use threads to continue using fork or you should be very careful about that interaction and reset anything that a thread could touch in the new process and remove references to all the threads and restart them in the new process (the debugger is multi-threaded and does a lot of things to try to work around that, but I'm still aware that just by having threads on some corner cases it could crash -- seldomly -- just because you're forking with those threads running depending on system level locks).
Related
According to
https://github.com/joblib/joblib/issues/180, and Is there a safe way to create a subprocess from a thread in python?
the Python multiprocessing module does not allow use from within threads. Is this true?
My understanding is that its fine to fork from threads, as long as you
aren't holding a threading.Lock when you do so (in the current thread? anywhere in the process?). However, Python's documentation is silent on whether threading.Lock objects are safely shared after a fork.
There's also this: locks shared from the logging module causes issues with fork. https://bugs.python.org/issue6721
I'm not sure how this issue arises. It sounds like the state of any locks in the process are copied into the child process when the current thread forks (which seems like a design error and certain to deadlock). If so, does using multiprocessing really provide any protection against this (since I'm free to create my multiprocessing.Pool after threading.Lock is created and entered by other threads, and after threads have started that using the not-fork-safe logging module) -- the multiprocessing module docs are also silent about whether multiprocessing.Pools should be allocated before Locks.
Does replacing threading.Lock with multiprocessing.Lock everywhere avoid this issue and allow us to safely combine threads and forks?
It sounds like the state of any locks in the process are copied into the child process when the current thread forks (which seems like a design error and certain to deadlock).
It is not a design error, rather, fork() predates single-process multithreading. The state of all locks is copied into the child process because they're just objects in memory; the entire address-space of the process is copied as is in fork. There are only bad alternatives: either copy all threads over fork, or deny forking in multithreaded application.
Therefore, fork()ing in a multithreading program was never the safe thing to do, unless then followed by execve() or exit() in the child process.
Does replacing threading.Lock with multiprocessing.Lock everywhere avoid this issue and allow us to safely combine threads and forks?
No. Nothing makes it safe to combine threads and forks, it cannot be done.
The problem is that when you have multiple threads in a process, after fork() system call you cannot continue safely running the program in POSIX systems.
For example, Linux manuals fork(2):
After a fork(2) in a multithreaded program, the child can safely call
only async-signal-safe functions (see signal(7)) until such time as it
calls execve(2).
I.e. it is OK to fork() in a multithreaded program and then only call async-signal-safe C functions (which is a rather limited subset of C functions), until the child process has been replaced with another executable!
Unsafe C function calls in child processes are then for example
malloc for dynamic memory allocation
any <stdio.h> functions for formatted input
most of the pthread_* functions required for thread state handling, including creation of new threads...
Thus there is very little what the child process can actually safely do. Unfortunately CPython core developers have been downplaying the problems caused by this. Even now the documentation says:
Note that safely forking a multithreaded process is
problematic.
Quite an euphemism for "impossible".
It is safe to use multiprocessing from a Python process that has multiple threads of control provided that you're not using the fork start method; in Python 3.4+ it is now possible to change the start method. In previous Python versions including all of Python 2, the POSIX systems always behaved as if fork was specified as the start method; this would result in undefined behaviour.
The problems are not limited to just threading.Lock objects but all locks held by the C standard library, the C extensions etc. What is worse that most of the time people would say "it works for me"... until it stops from working.
There were even a cases where a seemingly single-threading Python program is actually multithreading in MacOS X, causing failures and deadlocks upon using multiprocessing.
Another problem is that all opened file handles, their use, shared sockets might behave oddly in programs that forks, but that would be the case even in single-threaded programs.
TL;DR: using multiprocessing in multithreaded programs, with C extensions, with opened sockets etc:
fine in 3.4+ & POSIX if you explicitly specify a starting method that is not fork,
fine in Windows because it doesn't support forking;
in Python 2 - 3.3 on POSIX: you'll mostly shoot yourself in the foot.
I've been trying to wrap my head around how threads work in Python, and it's hard to find good information on how they operate. I may just be missing a link or something, but it seems like the official documentation isn't very thorough on the subject, and I haven't been able to find a good write-up.
From what I can tell, only one thread can be running at once, and the active thread switches every 10 instructions or so?
Where is there a good explanation, or can you provide one? It would also be very nice to be aware of common problems that you run into while using threads with Python.
Yes, because of the Global Interpreter Lock (GIL) there can only run one thread at a time. Here are some links with some insights about this:
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://smoothspan.wordpress.com/2007/09/14/guido-is-right-to-leave-the-gil-in-python-not-for-multicore-but-for-utility-computing/
From the last link an interesting quote:
Let me explain what all that means.
Threads run inside the same virtual
machine, and hence run on the same
physical machine. Processes can run
on the same physical machine or in
another physical machine. If you
architect your application around
threads, you’ve done nothing to access
multiple machines. So, you can scale
to as many cores are on the single
machine (which will be quite a few
over time), but to really reach web
scales, you’ll need to solve the
multiple machine problem anyway.
If you want to use multi core, pyprocessing defines an process based API to do real parallelization. The PEP also includes some interesting benchmarks.
Python's a fairly easy language to thread in, but there are caveats. The biggest thing you need to know about is the Global Interpreter Lock. This allows only one thread to access the interpreter. This means two things: 1) you rarely ever find yourself using a lock statement in python and 2) if you want to take advantage of multi-processor systems, you have to use separate processes. EDIT: I should also point out that you can put some of the code in C/C++ if you want to get around the GIL as well.
Thus, you need to re-consider why you want to use threads. If you want to parallelize your app to take advantage of dual-core architecture, you need to consider breaking your app up into multiple processes.
If you want to improve responsiveness, you should CONSIDER using threads. There are other alternatives though, namely microthreading. There are also some frameworks that you should look into:
stackless python
greenlets
gevent
monocle
Below is a basic threading sample. It will spawn 20 threads; each thread will output its thread number. Run it and observe the order in which they print.
import threading
class Foo (threading.Thread):
def __init__(self,x):
self.__x = x
threading.Thread.__init__(self)
def run (self):
print str(self.__x)
for x in xrange(20):
Foo(x).start()
As you have hinted at Python threads are implemented through time-slicing. This is how they get the "parallel" effect.
In my example my Foo class extends thread, I then implement the run method, which is where the code that you would like to run in a thread goes. To start the thread you call start() on the thread object, which will automatically invoke the run method...
Of course, this is just the very basics. You will eventually want to learn about semaphores, mutexes, and locks for thread synchronization and message passing.
Note: wherever I mention thread i mean specifically threads in python until explicitly stated.
Threads work a little differently in python if you are coming from C/C++ background. In python, Only one thread can be in running state at a given time.This means Threads in python cannot truly leverage the power of multiple processing cores since by design it's not possible for threads to run parallelly on multiple cores.
As the memory management in python is not thread-safe each thread require an exclusive access to data structures in python interpreter.This exclusive access is acquired by a mechanism called GIL ( global interpretr lock ).
Why does python use GIL?
In order to prevent multiple threads from accessing interpreter state simultaneously and corrupting the interpreter state.
The idea is whenever a thread is being executed (even if it's the main thread), a GIL is acquired and after some predefined interval of time the
GIL is released by the current thread and reacquired by some other thread( if any).
Why not simply remove GIL?
It is not that its impossible to remove GIL, its just that in prcoess of doing so we end up putting mutiple locks inside interpreter in order to serialize access, which makes even a single threaded application less performant.
so the cost of removing GIL is paid off by reduced performance of a single threaded application, which is never desired.
So when does thread switching occurs in python?
Thread switch occurs when GIL is released.So when is GIL Released?
There are two scenarios to take into consideration.
If a Thread is doing CPU Bound operations(Ex image processing).
In Older versions of python , Thread switching used to occur after a fixed no of python instructions.It was by default set to 100.It turned out that its not a very good policy to decide when switching should occur since the time spent executing a single instruction can
very wildly from millisecond to even a second.Therefore releasing GIL after every 100 instructions regardless of the time they take to execute is a poor policy.
In new versions instead of using instruction count as a metric to switch thread , a configurable time interval is used.
The default switch interval is 5 milliseconds.you can get the current switch interval using sys.getswitchinterval().
This can be altered using sys.setswitchinterval()
If a Thread is doing some IO Bound Operations(Ex filesystem access or
network IO)
GIL is release whenever the thread is waiting for some for IO operation to get completed.
Which thread to switch to next?
The interpreter doesn’t have its own scheduler.which thread becomes scheduled at the end of the interval is the operating system’s decision. .
Use threads in python if the individual workers are doing I/O bound operations. If you are trying to scale across multiple cores on a machine either find a good IPC framework for python or pick a different language.
One easy solution to the GIL is the multiprocessing module. It can be used as a drop in replacement to the threading module but uses multiple Interpreter processes instead of threads. Because of this there is a little more overhead than plain threading for simple things but it gives you the advantage of real parallelization if you need it.
It also easily scales to multiple physical machines.
If you need truly large scale parallelization than I would look further but if you just want to scale to all the cores of one computer or a few different ones without all the work that would go into implementing a more comprehensive framework, than this is for you.
Try to remember that the GIL is set to poll around every so often in order to do show the appearance of multiple tasks. This setting can be fine tuned, but I offer the suggestion that there should be work that the threads are doing or lots of context switches are going to cause problems.
I would go so far as to suggest multiple parents on processors and try to keep like jobs on the same core(s).
I have some long-term processes and such that must occur at given button-presses or other events in a Jython GUI I am creating.
In such situations, it seems the best option is to make a separate thread to run the called method/function in when the event happens.
What is the best way to do this? import Threading and have a class that I initialize and run when actionPerformed? Use invokelater? It seems there are a lot of ways to go about this, but would work best in the Jython-Swing environment and be the 'fastest'?
start = JButton( "Analyze", actionPerformed = self.do_analysis )
def do_analysis(self):
...
Large Time Consuming Task
...
I'm not 100% sure that jython has the same problem, but in C Python, you would run into a problem with the GIL or Global Interpreter Lock. This will mean that when your background thread is running, the GUI thread cannot start (even if it is queued to run on another core). You click a button and nothing happens :(
To get round this, I would split the long running process into short steps that can be run on an event, and queue up the event to start the next step as the current step ends. Then the GUI will be able to run between steps if it needs to. The shorter you make the steps, the more responsive the GUI will be - 50ms to 100ms should be OK.
This approach has the nice side effect that you don't need to worry about threads, locking, message queueing or anything. You can try and add these to a GUI but the GUI events and the threads can fight, leading to some very strange and hard to debug errors.
As for the "fastest", this is probably the lowest overhead for shorter background tasks. If you create a new process to run the background task (very heavy overhead in Windows) then it will run faster becasue it has its own core, but the start/stop overhead is high.
This is a situation where you will get the best results by remembering that Jython is running on the JVM. Jython has full access to Java classes, so use the Java threading API to set up a separate computation thread. And if the CPU load is high enough that using more cores would help, Java (the jvm) will take care of that by itself.
In some circumstances, with long running processes, people have used jstack -l to get the nids of running threads, and then use taskset to set the CPU affinity. The JVM nid is in hex and is the PID of the Linux process corresponding to a thread. Other OSes may have similar capabilities.
In general, it is not necessary to do anything other than to make your Jython multithreaded. If you use the Python threading module you don't have access to the full Java threading featureset, but it does use JVM threads under the hood. Just remember to limit your access to global variables or you will end up recreating the Global Interpreter Lock. The Queue module can help with this.
I have a Python program that spawns many threads, runs 4 at a time, and each performs an expensive operation. Pseudocode:
for object in list:
t = Thread(target=process, args=(object))
# if fewer than 4 threads are currently running, t.start(). Otherwise, add t to queue
But when the program is run, Activity Monitor in OS X shows that 1 of the 4 logical cores is at 100% and the others are at nearly 0. Obviously I can't force the OS to do anything but I've never had to pay attention to performance in multi-threaded code like this before so I was wondering if I'm just missing or misunderstanding something.
Thanks.
Note that in many cases (and virtually all cases where your "expensive operation" is a calculation implemented in Python), multiple threads will not actually run concurrently due to Python's Global Interpreter Lock (GIL).
The GIL is an interpreter-level lock.
This lock prevents execution of
multiple threads at once in the Python
interpreter. Each thread that wants to
run must wait for the GIL to be
released by the other thread, which
means your multi-threaded Python
application is essentially single
threaded, right? Yes. Not exactly.
Sort of.
CPython uses what’s called “operating
system” threads under the covers,
which is to say each time a request to
make a new thread is made, the
interpreter actually calls into the
operating system’s libraries and
kernel to generate a new thread. This
is the same as Java, for example. So
in memory you really do have multiple
threads and normally the operating
system controls which thread is
scheduled to run. On a multiple
processor machine, this means you
could have many threads spread across
multiple processors, all happily
chugging away doing work.
However, while CPython does use
operating system threads (in theory
allowing multiple threads to execute
within the interpreter
simultaneously), the interpreter also
forces the GIL to be acquired by a
thread before it can access the
interpreter and stack and can modify
Python objects in memory all
willy-nilly. The latter point is why
the GIL exists: The GIL prevents
simultaneous access to Python objects
by multiple threads. But this does not
save you (as illustrated by the Bank
example) from being a lock-sensitive
creature; you don’t get a free ride.
The GIL is there to protect the
interpreters memory, not your sanity.
See the Global Interpreter Lock section of Jesse Noller's post for more details.
To get around this problem, check out Python's multiprocessing module.
multiple processes (with judicious use
of IPC) are[...] a much better
approach to writing apps for multi-CPU
boxes than threads.
-- Guido van Rossum (creator of Python)
Edit based on a comment from #spinkus:
If Python can't run multiple threads simultaneously, then why have threading at all?
Threads can still be very useful in Python when doing simultaneous operations that do not need to modify the interpreter's state. This includes many (most?) long-running function calls that are not in-Python calculations, such as I/O (file access or network requests)) and [calculations on Numpy arrays][6]. These operations release the GIL while waiting for a result, allowing the program to continue executing. Then, once the result is received, the thread must re-acquire the GIL in order to use that result in "Python-land"
Python has a Global Interpreter Lock, which can prevent threads of interpreted code from being processed concurrently.
http://en.wikipedia.org/wiki/Global_Interpreter_Lock
http://wiki.python.org/moin/GlobalInterpreterLock
For ways to get around this, try the multiprocessing module, as advised here:
Does running separate python processes avoid the GIL?
AFAIK, in CPython the Global Interpreter Lock means that there can't be more than one block of Python code being run at any one time. Although this does not really affect anything in a single processor/single-core machine, on a mulitcore machine it means you have effectively only one thread running at any one time - causing all the other core to be idle.
If not, is there a way I can guarantee thread safety by programming a certain way?
To clarify, when talking about "threadsafe,' I mean Python threads, not OS-level threads.
It all depends on the interaction between your Cython code and Python's GIL, as documented in detail here. If you don't do anything special, Cython-generated code will respect the GIL (as will a C-coded extension that doesn't use the GIL-releasing macros); that makes such code "as threadsafe as Python code" -- which isn't much, but is easier to handle than completely free-threading code (you still need to architect multi-threaded cooperation and synchronization, ideally with Queue instances but possibly with locking &c).
Code that has relinquished the GIL and not yet acquired it back MUST NOT in any way interact with the Python runtime and the objects that the Python runtime uses -- this goes for Cython just as well as for C-coded extensions. The upside of it is of course that such code can run on a separate core (until it needs to sync up or in any way communicate with the Python runtime again, of course).
Python's global interpreter lock means that only one thread can be active in the interpreter at any one time. However, once control is passed out to a C extension another thread can be active within the interpreter. Multiple threads can be created, and nothing prevents a thread from being interrupted within the middle of a critical section. N
on thread-safe code can be implemented within the interpreter, so nothing about code running within the interpreter is inherently thread safe. Code in C or Pyrex modules can still modify data structures that are visible to python code. Native code can, of course, also have threading issues with native data structures.
You can't guarantee thread safety beyond using appropriate design and synchronisation - the GIL on the python interpreter doesn't materially change this.