I have some long-term processes and such that must occur at given button-presses or other events in a Jython GUI I am creating.
In such situations, it seems the best option is to make a separate thread to run the called method/function in when the event happens.
What is the best way to do this? import Threading and have a class that I initialize and run when actionPerformed? Use invokelater? It seems there are a lot of ways to go about this, but would work best in the Jython-Swing environment and be the 'fastest'?
start = JButton( "Analyze", actionPerformed = self.do_analysis )
def do_analysis(self):
...
Large Time Consuming Task
...
I'm not 100% sure that jython has the same problem, but in C Python, you would run into a problem with the GIL or Global Interpreter Lock. This will mean that when your background thread is running, the GUI thread cannot start (even if it is queued to run on another core). You click a button and nothing happens :(
To get round this, I would split the long running process into short steps that can be run on an event, and queue up the event to start the next step as the current step ends. Then the GUI will be able to run between steps if it needs to. The shorter you make the steps, the more responsive the GUI will be - 50ms to 100ms should be OK.
This approach has the nice side effect that you don't need to worry about threads, locking, message queueing or anything. You can try and add these to a GUI but the GUI events and the threads can fight, leading to some very strange and hard to debug errors.
As for the "fastest", this is probably the lowest overhead for shorter background tasks. If you create a new process to run the background task (very heavy overhead in Windows) then it will run faster becasue it has its own core, but the start/stop overhead is high.
This is a situation where you will get the best results by remembering that Jython is running on the JVM. Jython has full access to Java classes, so use the Java threading API to set up a separate computation thread. And if the CPU load is high enough that using more cores would help, Java (the jvm) will take care of that by itself.
In some circumstances, with long running processes, people have used jstack -l to get the nids of running threads, and then use taskset to set the CPU affinity. The JVM nid is in hex and is the PID of the Linux process corresponding to a thread. Other OSes may have similar capabilities.
In general, it is not necessary to do anything other than to make your Jython multithreaded. If you use the Python threading module you don't have access to the full Java threading featureset, but it does use JVM threads under the hood. Just remember to limit your access to global variables or you will end up recreating the Global Interpreter Lock. The Queue module can help with this.
Related
I am aware that this question is rather high-level and may be vague. Please ask if you need any more details and I will try to edit.
I am using QuickFix with Python bindings to consume high-throughput market data from circa 30 markets simultaneously. Most of computing the work is done in separate CPUs via the multiprocessing module. These parallel processes are spawned by the main process on startup. If I wish to interact with the market in any way via QuickFix, I have to do this within the main process, thus any commands (to enter orders, for example) which come from the child processes must be piped (via an mp.Queue object we will call Q) to the main process before execution.
This raises the problem of monitoring Q, which must be done within the main process. I cannot use Q.get(), since this method blocks and my entire main process will hang until something shows up in Q. In order to decrease latency, I must check Q frequently, on the order of 50 times per second. I have been using the apscheduler to do this, but I keep getting Warning errors stating that the runtime was missed. These errors are a serious issue because they prevent me from easily viewing important information.
I have therefore refactored my application to use the code posted by MestreLion as an answer to this question. This is working for me because it starts a new thread from the main process, and it does not print error messages. However, I am worried that this will cause nasty problems down the road.
I am aware of the Global Interpreter Lock in python (this is why I used the multiprocessing module to begin with), but I don't really understand it. Owing to the high-frequency nature of my application, I do not know if the Q monitoring thread and the main process consuming lots of incoming messages will compete for resources and slow each other down.
My questions:
Am I likely to run into trouble in this scenario?
If not, can I add more monitoring threads using the present approach and still be okay? There are at least two other things I would like to monitor at high frequency.
Thanks.
#MestreLion's solution that you've linked creates 50 threads per second in your case.
All you need is a single thread to consume the queue without blocking the rest of the main process:
import threading
def consume(queue, sentinel=None):
for item in iter(queue.get, sentinel):
pass_to_quickfix(item)
threading.Thread(target=consume, args=[queue], daemon=True).start()
GIL may or may not matter for performance in this case. Measure it.
Without knowing your scenario, it's difficult to say anything specific. Your question suggests, that the threads are waiting most of the time via get, so GIL is not a problem. Interprocess communication may result in problems much earlier. There you can think of switching to another protocol, using some kind of TCP-sockets. Then you can write the scheduler more efficient with select instead of threads, as threads are also slow and resource consuming. select is a system function, that allows to monitor many socket-connection at once, therefore it scales incredibly efficient with the amount of connections and needs nearly no CPU-power for monitoring.
I have a pretty basic understanding of multithreading in Python and an even basic-er understanding of asyncio.
I'm currently writing a small Curses-based program (eventually going to be using a full GUI, but that's another story) that handles the UI and user IO in the main thread, and then has two other daemon threads (each with their own queue/worker-method-that-gets-things-from-a-queue):
a watcher thread that watches for time-based and conditional (e.g. posts to a message board, received messages, etc.) events to occur and then puts required tasks into...
the other (worker) daemon thread's queue which then completes them.
All three threads are continuously running concurrently, which leads me to some questions:
When the worker thread's queue (or, more generally, any thread's queue) is empty, should it be stopped until is has something to do again, or is it okay to leave continuously running? Do concurrent threads take up a lot of processing power when they aren't doing anything other than watching its queue?
Should the two threads' queues be combined? Since the watcher thread is continuously running a single method, I guess the worker thread would be able to just pull tasks from the single queue that the watcher thread puts in.
I don't think it'll matter since I'm not multiprocessing, but is this setup affected by Python's GIL (which I believe still exists in 3.4) in any way?
Should the watcher thread be running continuously like that? From what I understand, and please correct me if I'm wrong, asyncio is supposed to be used for event-based multithreading, which seems relevant to what I'm trying to do.
The main thread is basically always just waiting for the user to press a key to access a different part of the menu. This seems like a situation asyncio would be perfect for, but, again, I'm not sure.
Thanks!
When the worker thread's queue (or, more generally, any thread's queue) is empty, should it be stopped until is has something to do again, or is it okay to leave continuously running? Do concurrent threads take up a lot of processing power when they aren't doing anything other than watching its queue?
You should just use a blocking call to queue.get(). That will leave the thread blocked on I/O, which means the GIL will be released, and no processing power (or at least a very minimal amount) will be used. Don't use non-blocking gets in a while loop, since that's going to require a lot more CPU wakeups.
Should the two threads' queues be combined? Since the watcher thread is continuously running a single method, I guess the worker thread would be able to just pull tasks from the single queue that the watcher thread puts in.
If all the watcher is doing is pulling things off a queue and immediately putting it into another queue, where it gets consumed by a single worker, it sounds like its unnecessary overhead - you may as well just consume it directly in the worker. It's not exactly clear to me if that's the case, though - is the watcher consuming from a queue, or just putting items into one? If it is consuming from a queue, who is putting stuff into it?
I don't think it'll matter since I'm not multiprocessing, but is this setup affected by Python's GIL (which I believe still exists in 3.4) in any way?
Yes, this is affected by the GIL. Only one of your threads can run Python bytecode at a time, so won't get true parallelism, except when threads are running I/O (which releases the GIL). If your worker thread is doing CPU-bound activities, you should seriously consider running it in a separate process via multiprocessing, if possible.
Should the watcher thread be running continuously like that? From what I understand, and please correct me if I'm wrong, asyncio is supposed to be used for event-based multithreading, which seems relevant to what I'm trying to do.
It's hard to say, because I don't know exactly what "running continuously" means. What is it doing continuously? If it spends most of its time sleeping or blocking on a queue, it's fine - both of those things release the GIL. If it's constantly doing actual work, that will require the GIL, and therefore degrade the performance of the other threads in your app (assuming they're trying to do work at the same time). asyncio is designed for programs that are I/O-bound, and can therefore be run in a single thread, using asynchronous I/O. It sounds like your program may be a good fit for that depending on what your worker is doing.
The main thread is basically always just waiting for the user to press a key to access a different part of the menu. This seems like a situation asyncio would be perfect for, but, again, I'm not sure.
Any program where you're mostly waiting for I/O is potentially a good for for asyncio - but only if you can find a library that makes curses (or whatever other GUI library you eventually choose) play nicely with it. Most GUI frameworks come with their own event loop, which will conflict with asyncio's. You would need to use a library that can make the GUI's event loop play nicely with asyncio's event loop. You'd also need to make sure that you can find asyncio-compatible versions of any other synchronous-I/O based library your application uses (e.g. a database driver).
That said, you're not likely to see any kind of performance improvement by switching from your thread-based program to something asyncio-based. It'll likely perform about the same. Since you're only dealing with 3 threads, the overhead of context switching between them isn't very significant, so switching from that a single-threaded, asynchronous I/O approach isn't going to make a very big difference. asyncio will help you avoid thread synchronization complexity (if that's an issue with your app - it's not clear that it is), and at least theoretically, would scale better if your app potentially needed lots of threads, but it doesn't seem like that's the case. I think for you, it's basically down to which style you prefer to code in (assuming you can find all the asyncio-compatible libraries you need).
I've been trying to wrap my head around how threads work in Python, and it's hard to find good information on how they operate. I may just be missing a link or something, but it seems like the official documentation isn't very thorough on the subject, and I haven't been able to find a good write-up.
From what I can tell, only one thread can be running at once, and the active thread switches every 10 instructions or so?
Where is there a good explanation, or can you provide one? It would also be very nice to be aware of common problems that you run into while using threads with Python.
Yes, because of the Global Interpreter Lock (GIL) there can only run one thread at a time. Here are some links with some insights about this:
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://smoothspan.wordpress.com/2007/09/14/guido-is-right-to-leave-the-gil-in-python-not-for-multicore-but-for-utility-computing/
From the last link an interesting quote:
Let me explain what all that means.
Threads run inside the same virtual
machine, and hence run on the same
physical machine. Processes can run
on the same physical machine or in
another physical machine. If you
architect your application around
threads, you’ve done nothing to access
multiple machines. So, you can scale
to as many cores are on the single
machine (which will be quite a few
over time), but to really reach web
scales, you’ll need to solve the
multiple machine problem anyway.
If you want to use multi core, pyprocessing defines an process based API to do real parallelization. The PEP also includes some interesting benchmarks.
Python's a fairly easy language to thread in, but there are caveats. The biggest thing you need to know about is the Global Interpreter Lock. This allows only one thread to access the interpreter. This means two things: 1) you rarely ever find yourself using a lock statement in python and 2) if you want to take advantage of multi-processor systems, you have to use separate processes. EDIT: I should also point out that you can put some of the code in C/C++ if you want to get around the GIL as well.
Thus, you need to re-consider why you want to use threads. If you want to parallelize your app to take advantage of dual-core architecture, you need to consider breaking your app up into multiple processes.
If you want to improve responsiveness, you should CONSIDER using threads. There are other alternatives though, namely microthreading. There are also some frameworks that you should look into:
stackless python
greenlets
gevent
monocle
Below is a basic threading sample. It will spawn 20 threads; each thread will output its thread number. Run it and observe the order in which they print.
import threading
class Foo (threading.Thread):
def __init__(self,x):
self.__x = x
threading.Thread.__init__(self)
def run (self):
print str(self.__x)
for x in xrange(20):
Foo(x).start()
As you have hinted at Python threads are implemented through time-slicing. This is how they get the "parallel" effect.
In my example my Foo class extends thread, I then implement the run method, which is where the code that you would like to run in a thread goes. To start the thread you call start() on the thread object, which will automatically invoke the run method...
Of course, this is just the very basics. You will eventually want to learn about semaphores, mutexes, and locks for thread synchronization and message passing.
Note: wherever I mention thread i mean specifically threads in python until explicitly stated.
Threads work a little differently in python if you are coming from C/C++ background. In python, Only one thread can be in running state at a given time.This means Threads in python cannot truly leverage the power of multiple processing cores since by design it's not possible for threads to run parallelly on multiple cores.
As the memory management in python is not thread-safe each thread require an exclusive access to data structures in python interpreter.This exclusive access is acquired by a mechanism called GIL ( global interpretr lock ).
Why does python use GIL?
In order to prevent multiple threads from accessing interpreter state simultaneously and corrupting the interpreter state.
The idea is whenever a thread is being executed (even if it's the main thread), a GIL is acquired and after some predefined interval of time the
GIL is released by the current thread and reacquired by some other thread( if any).
Why not simply remove GIL?
It is not that its impossible to remove GIL, its just that in prcoess of doing so we end up putting mutiple locks inside interpreter in order to serialize access, which makes even a single threaded application less performant.
so the cost of removing GIL is paid off by reduced performance of a single threaded application, which is never desired.
So when does thread switching occurs in python?
Thread switch occurs when GIL is released.So when is GIL Released?
There are two scenarios to take into consideration.
If a Thread is doing CPU Bound operations(Ex image processing).
In Older versions of python , Thread switching used to occur after a fixed no of python instructions.It was by default set to 100.It turned out that its not a very good policy to decide when switching should occur since the time spent executing a single instruction can
very wildly from millisecond to even a second.Therefore releasing GIL after every 100 instructions regardless of the time they take to execute is a poor policy.
In new versions instead of using instruction count as a metric to switch thread , a configurable time interval is used.
The default switch interval is 5 milliseconds.you can get the current switch interval using sys.getswitchinterval().
This can be altered using sys.setswitchinterval()
If a Thread is doing some IO Bound Operations(Ex filesystem access or
network IO)
GIL is release whenever the thread is waiting for some for IO operation to get completed.
Which thread to switch to next?
The interpreter doesn’t have its own scheduler.which thread becomes scheduled at the end of the interval is the operating system’s decision. .
Use threads in python if the individual workers are doing I/O bound operations. If you are trying to scale across multiple cores on a machine either find a good IPC framework for python or pick a different language.
One easy solution to the GIL is the multiprocessing module. It can be used as a drop in replacement to the threading module but uses multiple Interpreter processes instead of threads. Because of this there is a little more overhead than plain threading for simple things but it gives you the advantage of real parallelization if you need it.
It also easily scales to multiple physical machines.
If you need truly large scale parallelization than I would look further but if you just want to scale to all the cores of one computer or a few different ones without all the work that would go into implementing a more comprehensive framework, than this is for you.
Try to remember that the GIL is set to poll around every so often in order to do show the appearance of multiple tasks. This setting can be fine tuned, but I offer the suggestion that there should be work that the threads are doing or lots of context switches are going to cause problems.
I would go so far as to suggest multiple parents on processors and try to keep like jobs on the same core(s).
I have a script which runs quite a lot of concurrent threads (at least 200). Every thread does some quite complex evaluations, which can take unpredictably lot of time. The evaluation method is implemented in C and I can't change it. I want to limit the method execution time for every thread. Please advise.
From what I understand of your problem, it might be a good case for using multiprocessing instead of multithreading. Multiprocessing will allow you to make use of all the available resources on the system - and then some, if you're not careful.
Threads don't actually run in parallel, so unless you're doing a lot of waiting for I/O or something like that, it would make more sense to call it from a separate process. You could use the Python multiprocessing library to call it from a Python script, or you could use a wrapper written in C and use some form of interprocess communication. The second option will avoid the overhead of launching another Python instance just to run some C code.
You could call time.sleep (or perform other tasks and check the system clock for elapsed time), and then check for results after the desired interval, permitting any processes that haven't finished to continue running while you make use of the results. Or, if you don't care at that point, you can send a signal to kill the process.
I've been trying to wrap my head around how threads work in Python, and it's hard to find good information on how they operate. I may just be missing a link or something, but it seems like the official documentation isn't very thorough on the subject, and I haven't been able to find a good write-up.
From what I can tell, only one thread can be running at once, and the active thread switches every 10 instructions or so?
Where is there a good explanation, or can you provide one? It would also be very nice to be aware of common problems that you run into while using threads with Python.
Yes, because of the Global Interpreter Lock (GIL) there can only run one thread at a time. Here are some links with some insights about this:
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://smoothspan.wordpress.com/2007/09/14/guido-is-right-to-leave-the-gil-in-python-not-for-multicore-but-for-utility-computing/
From the last link an interesting quote:
Let me explain what all that means.
Threads run inside the same virtual
machine, and hence run on the same
physical machine. Processes can run
on the same physical machine or in
another physical machine. If you
architect your application around
threads, you’ve done nothing to access
multiple machines. So, you can scale
to as many cores are on the single
machine (which will be quite a few
over time), but to really reach web
scales, you’ll need to solve the
multiple machine problem anyway.
If you want to use multi core, pyprocessing defines an process based API to do real parallelization. The PEP also includes some interesting benchmarks.
Python's a fairly easy language to thread in, but there are caveats. The biggest thing you need to know about is the Global Interpreter Lock. This allows only one thread to access the interpreter. This means two things: 1) you rarely ever find yourself using a lock statement in python and 2) if you want to take advantage of multi-processor systems, you have to use separate processes. EDIT: I should also point out that you can put some of the code in C/C++ if you want to get around the GIL as well.
Thus, you need to re-consider why you want to use threads. If you want to parallelize your app to take advantage of dual-core architecture, you need to consider breaking your app up into multiple processes.
If you want to improve responsiveness, you should CONSIDER using threads. There are other alternatives though, namely microthreading. There are also some frameworks that you should look into:
stackless python
greenlets
gevent
monocle
Below is a basic threading sample. It will spawn 20 threads; each thread will output its thread number. Run it and observe the order in which they print.
import threading
class Foo (threading.Thread):
def __init__(self,x):
self.__x = x
threading.Thread.__init__(self)
def run (self):
print str(self.__x)
for x in xrange(20):
Foo(x).start()
As you have hinted at Python threads are implemented through time-slicing. This is how they get the "parallel" effect.
In my example my Foo class extends thread, I then implement the run method, which is where the code that you would like to run in a thread goes. To start the thread you call start() on the thread object, which will automatically invoke the run method...
Of course, this is just the very basics. You will eventually want to learn about semaphores, mutexes, and locks for thread synchronization and message passing.
Note: wherever I mention thread i mean specifically threads in python until explicitly stated.
Threads work a little differently in python if you are coming from C/C++ background. In python, Only one thread can be in running state at a given time.This means Threads in python cannot truly leverage the power of multiple processing cores since by design it's not possible for threads to run parallelly on multiple cores.
As the memory management in python is not thread-safe each thread require an exclusive access to data structures in python interpreter.This exclusive access is acquired by a mechanism called GIL ( global interpretr lock ).
Why does python use GIL?
In order to prevent multiple threads from accessing interpreter state simultaneously and corrupting the interpreter state.
The idea is whenever a thread is being executed (even if it's the main thread), a GIL is acquired and after some predefined interval of time the
GIL is released by the current thread and reacquired by some other thread( if any).
Why not simply remove GIL?
It is not that its impossible to remove GIL, its just that in prcoess of doing so we end up putting mutiple locks inside interpreter in order to serialize access, which makes even a single threaded application less performant.
so the cost of removing GIL is paid off by reduced performance of a single threaded application, which is never desired.
So when does thread switching occurs in python?
Thread switch occurs when GIL is released.So when is GIL Released?
There are two scenarios to take into consideration.
If a Thread is doing CPU Bound operations(Ex image processing).
In Older versions of python , Thread switching used to occur after a fixed no of python instructions.It was by default set to 100.It turned out that its not a very good policy to decide when switching should occur since the time spent executing a single instruction can
very wildly from millisecond to even a second.Therefore releasing GIL after every 100 instructions regardless of the time they take to execute is a poor policy.
In new versions instead of using instruction count as a metric to switch thread , a configurable time interval is used.
The default switch interval is 5 milliseconds.you can get the current switch interval using sys.getswitchinterval().
This can be altered using sys.setswitchinterval()
If a Thread is doing some IO Bound Operations(Ex filesystem access or
network IO)
GIL is release whenever the thread is waiting for some for IO operation to get completed.
Which thread to switch to next?
The interpreter doesn’t have its own scheduler.which thread becomes scheduled at the end of the interval is the operating system’s decision. .
Use threads in python if the individual workers are doing I/O bound operations. If you are trying to scale across multiple cores on a machine either find a good IPC framework for python or pick a different language.
One easy solution to the GIL is the multiprocessing module. It can be used as a drop in replacement to the threading module but uses multiple Interpreter processes instead of threads. Because of this there is a little more overhead than plain threading for simple things but it gives you the advantage of real parallelization if you need it.
It also easily scales to multiple physical machines.
If you need truly large scale parallelization than I would look further but if you just want to scale to all the cores of one computer or a few different ones without all the work that would go into implementing a more comprehensive framework, than this is for you.
Try to remember that the GIL is set to poll around every so often in order to do show the appearance of multiple tasks. This setting can be fine tuned, but I offer the suggestion that there should be work that the threads are doing or lots of context switches are going to cause problems.
I would go so far as to suggest multiple parents on processors and try to keep like jobs on the same core(s).