associationRules.csv = #I'm only displaying some lines here for my case
,antecedents,consequents,confidence
19,"(LM = 20, SMOK = y)",(DIAB = n),0.5
20,(LM = 20),"(DIAB = n, SMOK = y)",0.5
21,"(DIAB = n, RCA = 85, LM = 15)",(SMOK = y),1.0
175,(RCA = 85),(LAD = 40),0.6666666666666667
176,(LAD = 40),(RCA = 85),1.0
177,"(DIAB = y, CHOL = 200, SMOK = y)",(LAD = 90),0.6666666666666667
178,"(DIAB = y, CHOL = 200, LAD = 90)",(SMOK = y),1.0
200,(LM = 20),"(RCA = 75, DIAB = n)",0.5
203,"(SEX = F, DIAB = y, SMOK = y)",(LM = 20),1.0
239,(CHOL = 200),"(DIAB = y, SMOK = y)",1.0
I am iterating through association rules rows and would like to extract only the rows if:
column " antecedent" has datasets belongs to g1 or g2 only. and DOES NOT belong to y. Meaning, only lines (175, 176, 203) should be extracted.
y = ['CHOL = 200', 'LM = 20', 'LM = 25', 'LM = 30', 'LM = 15', 'LM = 35' ]
#g1 and g2 are the rest of other values of antecedents s.a: DIAB, RCA, LAD..etc
My code only works if len(antecedents)==1 and fails when len(antecedents)>1.
antecedents_list = []
for i, row in associationRules.iterrows():
antecedents = row.iloc[0]
flag1 = False
flag2 = False
single_antecedent = False
for j, v in enumerate(antecedents):
if len(antecedents) == 1 and (v not in y): #print single items
single_antecedent = True
elif len(antecedents) > 1 and (v not in y):
if v in g1:
flag1 = True
if v in g2:
flag2 = True
if single_antecedent or (flag1 and flag2):
antecedents_list.append(antecedents)
rules['antecedents'] = antecedents_list
What am I doing wrong? Can anyone help
If you means belongs to g1 or g2 only and DOES NOT belong to y, and g1 g2 are the rest of other values out of y. I think you can just check if there is any element belong to y. If answer is no, that is column you want, like (175, 176, 203).
In addition, I think the condition whether len(antecedents) == 1 is not neccessary here. you can try this:
antecedents_list = []
for i, row in associationRules.iterrows():
antecedents = row.iloc[0]
flag = True
for v in antecedents:
# belong to y, break out
if v in y:
flag = False
break
# or more pythonic way
# flag = all(v not in y for v in antecedents)
if flag:
antecedents_list.append(antecedents)
rules['antecedents'] = antecedents_list
Can not debug myself, you can have a try.
if you insist on your code version, I can tell where is wrong:
if single_antecedent or (flag1 and flag2):
here should change to flag1 or flag2
Hope that helps you, and comment if you have further questions. : )
Related
I'm trying to make one function which do thing which depend of a variable tool.
If tool == 1 that create canva rectangle. I want if tool == 5, that delete block from mouse position, everything is working exept delete, I'm probably giving wrong argument but I don't know. Thanks
names = {}
i = 0
a = 40
def evn(e):
xx = c.canvasx(e.x)
yy = c.canvasy(e.y)
t = c.find_withtag('point')
xg = (e.x+GRID/2)//GRID
yg = (e.y+GRID/2)//GRID
test=(xg*GRID, yg*GRID)
if tool==1:
global i
global a
i += 1
names[i] = (xg*GRID, yg*GRID)
oc = get_oval_centre(c.bbox(t))
oc[0] += GRID
oc[1] += GRID
test = c.create_rectangle(-12, -12, 12, 12, fill='white', outline='white', tags=test)
set_oval_coords(test, (xg*GRID, yg*GRID))
elif tool==5:
xx = c.canvasx(e.x)
yy = c.canvasy(e.y)
t = c.find_withtag('point')
xg = (e.x+GRID/2)//GRID
yg = (e.y+GRID/2)//GRID
oc = get_oval_centre(c.bbox(t))
oc[0] += GRID
oc[1] += GRID
if (xg*GRID, yg*GRID) in names.values():
print('found')
c.delete(test)
I wrote a MPC with Python and it worked before. After a long time I want to use it again but I got this Error
f0 passed has more than 1 dimension.
But I didn't change anything on my code. It is some kind of strange.
Here is my code:
import numpy as np
import numpy.linalg as npl
import matplotlib.pyplot as plt
from scipy.optimize import minimize
def mpcAugment(Am, Bm, Cm ):
"Function for Augmented Model"
nx, nu = Bm.shape
ny = Cm.shape[0]
A = np.zeros((nx+ny,nx+ny))
A[0:nx,0:nx] = Am
A[nx:nx+ny,0:nx] = Cm#Am
A[nx:nx+ny,nx:nx+ny] = np.eye(ny)
B = np.zeros((nx+ny,nu))
B[0:nx,:nu] = Bm
B[nx:nx+ny,:nu] = Cm#Bm
C = np.zeros((ny,nx+ny))
C[:ny,nx:nx+ny] = np.eye(ny)
return A, B, C
'Define Parameters'
k = 0.4
AICB = 153.8
mcp = 8.8e4
vamb1 = 30
vamb2 = 45
a = -k*AICB/mcp
b = -1/mcp
Ts = 20
VICBref = -5.0
Am = np.array([[1+Ts*a]])
Bm = np.array([[Ts*b]])
Gm = np.array([[-Ts*a]])
Cm = np.array([[1]])
A, B, C = mpcAugment(Am,Bm,Cm)
A, G, C = mpcAugment(Am,Gm,Cm)
nx, nu = B.shape
ny = C.shape[0]
nd = G.shape[1]
Np = 20
Nu = 5
F = np.zeros((Np*ny,nx))
PHI = np.zeros((Np*ny,Nu*nu))
PHIw = np.zeros((Np*ny,Np*nd))
for i in range(0,Np):
Ai = npl.matrix_power(A, i+1)
F[i*ny:(i+1)*ny,:] = C#Ai
for j in range(0, Nu):
if j <= i:
Aij = np.linalg.matrix_power(A, i-j)
PHI[i*ny:(i+1)*ny, j*nu:(j+1)*nu] = C#Aij#B
for j in range(0, Np):
if j <= i:
Aij = np.linalg.matrix_power(A, i-j)
PHIw[i*ny:(i+1)*ny, j*nd:(j+1)*nd] = C#Aij#G
umax = 3100
umin = 0
Q = np.eye(Np*ny)
R = 1e-2*np.eye(Nu*nu)
Rs = VICBref*np.ones((Np*ny,1))
Ainq = np.zeros((2*Nu*nu,Nu*nu))
binq = np.zeros((2*Nu*nu,1))
cinq = np.zeros((2*Nu*nu,1))
for i in range(0,Nu):
binq[i*nu:(i+1)*nu] = umax
binq[(i+Nu)*nu:(Nu+i+1)*nu] = 1
cinq[i*nu:(i+1)*nu] = 1
cinq[(i+Nu)*nu:(Nu+i+1)*nu] = -1
for j in range(0,i+1):
Ainq[i*nu:(i+1)*nu,j*nu:(j+1)*nu] = np.eye(nu)
Ainq[(i+Nu)*nu:(Nu+i+1)*nu,j*nu:(j+1)*nu] = np.eye(nu)
u0 = 0
def objective(du):
dU = np.array(du).reshape((len(du),1))
Y = F#x + PHI#dU + PHIw#w
return np.transpose((Rs-Y))#(Rs-Y)+np.transpose(dU)#R#(dU)
def constraint1(du):
dU = np.array(du).reshape((len(du),1))
return (binq - Ainq#dU - cinq*u0)[0]
#print(objective([1,1,1]))
ulim = (umin, umax)
bnds = np.kron(np.ones((Nu,1)),ulim)
#print(bnds)
Um = np.ones((nu*Nu,1))
Tsim = 5e4
time = np.arange(0,Tsim,Ts)
Nt = len(time)
xm = np.zeros((Nt,1))
um = np.zeros((Nt,nu))
ym = np.zeros((Nt,ny))
xm[0] = 0
ym[0] = Cm.dot(xm[0])
w = np.zeros((Np*nd,1))
print('Am = ',Am)
print('Bm = ',Bm)
print('Cm = ',Cm)
x = np.zeros((nx,1))
x[1] = xm[0]
vamb = vamb1
Vamb = np.zeros((Nt,1))
Ns = int(np.floor(Nt/2))
Vamb[0:Ns] = vamb1*np.ones((Ns,1))
Vamb[Ns:Nt] = vamb2*np.ones((Nt-Ns,1))
Vref = VICBref*np.ones((Nt,1))
con = {'type':'ineq','fun':constraint1}
for i in range(0,Nt-1):
sol = minimize(objective, Um, method = 'SLSQP',constraints = con)
if sol.success == False:
print('Error Cant solve problem')
exit()
Um = sol.x
um[i+1] = um[i] + Um[0]
u0 = um[i+1]
xm[i+1] = Am.dot(xm[i])+Bm.dot(um[i+1])+Gm.dot(Vamb[i])
ym[i+1] = Cm.dot(xm[i+1])
for j in range(0,Np):
if i+j < Nt:
Rs[j] = Vref[i+j]
w[j] = Vamb[i+j]-Vamb[i+j-1]
else:
Rs[j] = Vref[Nt-1]
w[j] = 0
x[0] = xm[i+1] - xm[i]
x[1] = xm[i+1]
print('Q = ',um[i+1],' , VICB = ',xm[i+1], ' vamb = ', Vamb[i])
hour = 60*60
plt.figure()
plt.subplot(2,1,1)
plt.plot(time/hour,ym)
plt.plot(time/hour,Vref,'--')
plt.xlabel('time(hours)')
plt.xlim([0, Tsim/hour])
plt.subplot(2,1,2)
plt.plot(time/hour,um)
plt.xlim([0, Tsim/hour])
plt.show()
It about a controller, which control the temperature of a cool box.
Is that possible that anything changed in main simply code?
I think the problem is now in minimizations part.
I reinstalled all of my libraries and it worked
I have a dictionary with multiple key defined as (arbitrary inputs):
colors = {}
colors['red'] = {}
colors['blue'] = {}
colors['red'][clustname] = np.array([])
colors['blue'][clustname] = np.array([])
basically I want to plot a red v blue graph for each 'cluster'. I have 13 'clusters' in total with differing color values for each. The names in my code are different from the arbitrary ones above, but I figured it would be easier to understand with basic values then to look at the overall code:
colpath = '/home/jacob/PHOTOMETRY/RESTFRAME_COLOURS/' #This is the path to the restframe colors
goodcolindx = {}
colfiledat = {}
colors = {}
colors['UMINV'] = {}
colors['VMINJ'] = {}
colors['NUVMINV'] = {}
colors['id'] = {}
for iclust in range(len(clustname)):
colors['UMINV'][clustname[iclust]] = np.array([])
colors['VMINJ'][clustname[iclust]] = np.array([])
colors['id'][clustname[iclust]] = np.array([])
colors['NUVMINV'][clustname[iclust]] = np.array([])
filepath = catpath + clustname[iclust] + "_totalall_" + extname[iclust] + ".cat"
photdat[clustname[iclust]] = ascii.read(filepath)
filepath = zpath + "compilation_" + clustname[iclust] + ".dat"
zdat[clustname[iclust]] = ascii.read(filepath)
colfilepath = colpath + 'RESTFRAME_MASTER_' + clustname[iclust] + '_indivredshifts.cat'
colfiledat[clustname[iclust]] = ascii.read(colfilepath)
goodcolindx[clustname[iclust]] = np.where((colfiledat[clustname[iclust]]['REDSHIFTUSED'] > 0.9) & \
(colfiledat[clustname[iclust]]['REDSHIFTUSED'] < 1.5) & \
(photdat[clustname[iclust]]['totmask'] == 0) & \
(photdat[clustname[iclust]]['K_flag'] == 0) & \
((zdat[clustname[iclust]]['quality'] == 3) | (zdat[clustname[iclust]]['quality'] == 4)))
goodcolindx[clustname[iclust]] = goodcolindx[clustname[iclust]][0]
for igood in range(len(goodcolindx[clustname[iclust]])):
idstring = str(photdat[clustname[iclust]]['id'][goodcolindx[clustname[iclust]][igood]])
colors['NUVMINV'][clustname[iclust]] = np.append(colors['NUVMINV'][clustname[iclust]], -2.5 *
np.log10(colfiledat[clustname[iclust]]['NUV'][goodcolindx[clustname[iclust]][igood]]
/ colfiledat[clustname[iclust]]['V'][goodcolindx[clustname[iclust]][igood]]))'SpARCS-0035'
colors['UMINV'][clustname[iclust]] = np.append(colors['UMINV'][clustname[iclust]], colfiledat[clustname[iclust]]['UMINV'][goodcolindx[clustname[iclust]][igood]])
colors['id'][clustname[iclust]] = np.append(colors['id'][clustname[iclust]], photdat[clustname[iclust]]['id'][goodcolindx[clustname[iclust]][igood]])
colors['VMINJ'][clustname[iclust]] = np.append(colors['VMINJ'][clustname[iclust]], colfiledat[clustname[iclust]]['VMINJ'][goodcolindx[clustname[iclust]][igood]])
for iclustc in colors:
plt.plot(colors['VMINJ'][clustname[iclustc]], colors['UMINV'][clustname[iclustc]], 'ko')
plt.show()
So in this case, my 'red' is the VMINJ and my 'blue' is the UMINV. I am trying to use a for loop to cycle through all the cluster names that I have, but I keep getting the error back 'String indices must be integers'. I understand the basics of that, but don't know how to fix my code to make plots for each 'red' v 'blue' for each cluster. Any help would be awesome, let me know if you have questions
I figured it out. I changed the for loop to:
for iclust in range(len(clustname)):
plt.plot(colors['UMINV'][clustname[iclust]]....
and that worked
I am trying to assign character state changes from a presence-absence matrix to a phylogeny.
I have tried assigning each character to its leaf node, and then if the leaf node's sister has the same character I reassign the character to the parent node (and work back until all nodes are assigned). I am using a dummy dataset to try to achieve this:
Matrix
>Dme_001
1110000000000111
>Dme_002
1110000000000011
>Cfa_001
0110000000000011
>Mms_001
0110000000000011
>Hsa_001
0110000000000010
>Ptr_002
0110000000000011
>Mmu_002
0110000000000011
>Hsa_002
0110000000000011
>Ptr_001
0110000000000011
>Mmu_001
0110000000000011
Phylogeny
((Dme_001,Dme_002),(((Cfa_001,Mms_001),((Hsa_001,Ptr_001),Mmu_001)),(Ptr_002,(Hsa_002,Mmu_002))));
I assign internal nodes using ete3, so my output should be:
BranchID CharacterState Change
Node_1: 0 0->1
Hsa_001: 15 1->0
As my code assigns character states based on their sisters if a loss is encountered it messes up the output so that:
BranchID CharacterState Change
Node_1: 0 0->1
Node_3 15 0->1
Node_5 15 0->1
Node_8 15 0->1
Could someone please help me with this? I'm coding in python and developing tunnel vision. Thanks in advance
My code:
from ete3 import PhyloTree
from collections import Counter
import itertools
PAM = open('PAM','r')
gene_tree = '((Dme_001,Dme_002),(((Cfa_001,Mms_001),((Hsa_001,Ptr_001),Mmu_001)),(Ptr_002,(Hsa_002,Mmu_002))));'
NodeIDs = []
tree = PhyloTree(gene_tree)
edge = 0
for node in tree.traverse():
if not node.is_leaf():
node.name = "Node_%d" %edge
edge +=1
NodeIDs.append(node.name)
if node.is_leaf():
NodeIDs.append(node.name)
f = open('PAM','r')
taxa = []
pap = []
for line in f:
term = line.strip().split('\t')
taxa.append(term[0])
p = [p for p in term[1]]
pap.append(p)
statesD = dict(zip(taxa, pap))
def PlotCharacterStates():
Plots = []
events = []
for key, value in statesD.iteritems():
count = -1
for s in value:
count+=1
if s == CharacterState:
a = key, count
events.append(a)
Round3_events = []
while len(events) > 0:
for rel in Relationships:
node_store = []
sis_store = []
for event in events:
if rel[0] == event[0]:
node_store.append(event[1])
if rel[1] == event[0]:
sis_store.append(event[1])
if (len(node_store) > 0) and (len(sis_store) > 0):
place = rel, node_store, sis_store
Round3_events.append(place)
moved = []
for placement in Round3_events:
intercept = (set(placement[1]) & set(placement[2]))
node_plot = (set(placement[1]) - set(placement[2]))
sis_plot = (set(placement[2]) - set(placement[1]))
if len(node_plot) > 0:
for x in node_plot:
y = placement[0][0], x
Plots.append(y)
moved.append(y)
if len(sis_plot) > 0:
for x in sis_plot:
y = placement[0][1], x
Plots.append(y)
moved.append(y)
if len(intercept) > 0:
for x in intercept:
y = placement[0][2], x
y1 = placement[0][0], x
y2 = placement[0][1], x
moved.append(y1)
moved.append(y2)
events.append(y)
for event in events:
if event[0] == "Node_0":
Plots.append(event)
moved.append(event)
events2 = (set(events) - set(moved))
events = []
for event in events2:
events.append(event)
pl = set(Plots)
Plots = []
for p in pl:
Plots.append(p)
print CharacterState, Plots
'''
assign sisters to leaves, internals
'''
e = []
round1b_e = []
round2a_e = []
placements = []
Relationships = []
Rounds = []
for node in tree.traverse():
sisters = node.get_sisters()
parent = node.up
cycle1 = []
if node.is_leaf():
for sister in sisters:
if sister.is_leaf():
round1a = ["Round1a", node.name, sister.name, parent.name]
node_names = node.name, sister.name
Rounds.append(round1a)
e.append(node_names)
x = node.name, sister.name, parent.name, "leaf-leaf"
Relationships.append(x)
if not sister.is_leaf():
round1b = ["Round1b", node.name, sister.name, parent.name]
node_names = node.name, sister.name
Rounds.append(round1b)
round1b_e.append(node_names)
x = node.name, sister.name, parent.name, "node-leaf"
Relationships.append(x)
elif not node.is_leaf():
if not node.is_root():
for sister in sisters:
if not sister.is_leaf():
node_names = node.name, sister.name
round2a_e.append(node_names)
x = node.name, sister.name, parent.name, "node-node"
Relationships.append(x)
x = []
CharacterStates = []
for key, value in statesD.iteritems():
for value in value:
x.append(value)
y = sorted(set(x))
for x in y:
CharacterStates.append(x)
for CharacterState in CharacterStates:
PlotCharacterStates()
I am trying to triangulate a bitmap (to produce levels for my 2d game), and I am stuck. I am using the Triangle library by Jonathan Shewchuk using this wrapper.
I start with an image,
then I detect edges and determine which vertices are holes. I picked every fourth for triangulation,
then I passed those points to triangulation, but I end up with something like this
where my hole has disappeared. What am I doing wrong?
Also, why am i getting somewhat convex hull instead of triangulated polygon?
Here is my code so far:
#here i am loading all data, that i will use later on but i had to insert that, just in case
mapfg = glob(path.join(pathtomapfolder, "Foreground.png"))[0] #Getting map foreground image
mapob = glob(path.join(pathtomapfolder, "Obstacles.png"))[0] #Getting map file
mappr = glob(path.join(pathtomapfolder, "Properties.txt"))[0] #Getting map info file
self.mapprops = [mapob, mapfg, mappr]
#getting ground and obstacles
obsbitmap = Image.open(self.mapprops[0])
lockBitmap = obsbitmap.load()
compareClr = (0, 0, 0)
for y in xrange(obsbitmap.size[1]):
tmp = []
for x in xrange(obsbitmap.size[0]):
if lockBitmap[x, y][0] == compareClr[0] and lockBitmap[x, y][6] == compareClr[1] and lockBitmap[x, y][7] == compareClr[2]:
tmp.append(1)
else:
tmp.append(0)
self.obs.append(tmp)
#detecting edges
for y in xrange(len(self.obs)):
tmphit = []
for x in xrange(len(self.obs[0])):
if (self.obs[y][x] == 0 and (self.obs[MinMax.NoOver(y - 1, len(self.obs) - 1, 0)][x] == 1 or self.obs[y][MinMax.NoOver(x - 1, len(self.obs[0]) - 1, 0)] == 1 or self.obs[y][MinMax.NoOver(x + 1, len(self.obs[0]) - 1, 0)] == 1 or self.obs[MinMax.NoOver(y + 1, len(self.obs) - 1, 0)][x] == 1)) or (self.obs[y][x] == 1 and (MinMax.WillOver(y - 1, len(self.obs) - 1, 0) or MinMax.WillOver(x - 1, len(self.obs[0]) - 1, 0) or MinMax.WillOver(x + 1, len(self.obs[0]) - 1, 0) or MinMax.WillOver(y + 1, len(self.obs) - 1, 0))):
tmphit.append(True)
else:
tmphit.append(False)
self.hit.append(tmphit)
#here it starts, first of all i search for vertice, then go CW or CCW and get all vertices from edge of one polygon, i also detect, whether it is hole or not and to which polygon is related to.
xcirc = ycirc = 0
coords = []
coordvalues = []
parentid = []
self.allverts = [coords, coordvalues, parentid]
polyID = 0
for y in xrange(len(self.obs)):
for x in xrange(len(self.obs[0])):
if self.hit[y][x] and not (x, y) in self.allverts[0]:
left = []
right = []
up = []
down = []
numobjects = numholes = 0
type = ""
parentid = -1
for v in xrange(len(self.allverts[0])):
if self.allverts[0][v][8] == y and self.allverts[0][v][0] < x: left.append(self.allverts[1][v])
if self.allverts[0][v][9] == y and self.allverts[0][v][0] > x: right.append(self.allverts[1][v])
if self.allverts[0][v][0] == x and self.allverts[0][v][10] < y: up.append(self.allverts[1][v])
if self.allverts[0][v][0] == x and self.allverts[0][v][11] > y: down.append(self.allverts[1][v])
for id in xrange(polyID):
if ("not hole", id) in left and ("not hole", id) in right and ("not hole", id) in up and ("not hole", id) in down:
numobjects += 1
parentid = id
elif ("hole", id) in left and ("hole", id) in right and ("hole", id) in up and ("hole", id) in down:
numholes += 1
if numobjects == 0 or numobjects == numholes: type = "not hole"
elif numobjects > numholes: type = "hole"
found = False
lastangle = -90
self.allverts[0].append((x, y))
self.allverts[1].append((type, polyID))
self.allverts[2].append(parentid)
v = 1
while not found:
angle = MinMax.Overflow(lastangle - 45, 180, -179)
lastangle = angle
xcirc = int(round(math.cos((math.pi / 180) * angle)))
ycirc = int(round(math.sin((math.pi / 180) * angle)))
if self.hit[MinMax.NoOver(self.allverts[0][-1][12] + ycirc, len(self.hit) - 1, 0)][MinMax.NoOver(self.allverts[0][-1][0] + xcirc, len(self.hit[0]) - 1, 0)] and (MinMax.WontOver(self.allverts[0][-1][13] + ycirc, len(self.hit) - 1, 0) and MinMax.WontOver(self.allverts[0][-1][0] + xcirc, len(self.hit[0]) - 1, 0)):
if not (self.allverts[0][-1][0] + xcirc, self.allverts[0][-1][14] + ycirc) in self.allverts[0]:
self.allverts[0].append((self.allverts[0][-1][0] + xcirc, self.allverts[0][-1][15] + ycirc))
self.allverts[1].append((type, polyID))
self.allverts[2].append(parentid)
v += 1
else:
#self.allverts.append((self.allverts[-1][0] + xcirc, self.allverts[-1][16] + ycirc))
found = True
if v < 4:
polyID -= 1
for d in xrange(v):
del self.allverts[0][-1]
del self.allverts[1][-1]
del self.allverts[2][-1]
lastangle = MinMax.Overflow(lastangle + 135, 180, -179)
polyID += 1
# now i have to convert that data structure to something i can pass to triangulate function
objects = []
objectpoints = []
idtoindexobj = []
holes = []
holepoints = []
holecoords = []
holeleft = len(self.hit[0])
holetop = len(self.hit)
holeright = holebottom = 0
idtoindexhole = []
prevvert = (self.allverts[0][0], self.allverts[1][0], self.allverts[2][0])
d = 0
for u in xrange(len(self.allverts[0])):
vert = (self.allverts[0][u], self.allverts[1][u], self.allverts[2][u])
if vert[1][17] != prevvert[1][18]:
d = 0
if prevvert[1][0] == "not hole":
objects.append(objectpoints)
objectpoints = []
idtoindexobj.append(prevvert[1][19])
else:
holes.append(holepoints)
holepoints = []
holecoords.append((holeleft + (MinMax.AminB(holeleft, holeright)/2), holetop + (MinMax.AminB(holetop, holebottom)/2)))
idtoindexhole.append(prevvert[2])
holeleft = len(self.hit[0])
holetop = len(self.hit)
holeright = holebottom = 0
if vert[1][0] == "not hole":
if d % 4 == 0:
objectpoints.append((vert[0][0], vert[0][20]))
else:
if d % 4 == 0:
holepoints.append((vert[0][0], vert[0][21]))
if vert[0][0] < holeleft: holeleft = vert[0][0]
if vert[0][0] > holeright: holeright = vert[0][0]
if vert[0][22] < holetop: holetop = vert[0][23]
if vert[0][24] > holebottom: holebottom = vert[0][25]
d+=1
prevvert = vert
if prevvert[1][0] == "not hole":
objects.append(objectpoints)
objectpoints = []
idtoindexobj.append(prevvert[1][26])
else:
holes.append(holepoints)
holepoints = []
holecoords.append((holeleft + (MinMax.AminB(holeleft, holeright)/2), holetop + (MinMax.AminB(holetop, holebottom)/2)))
idtoindexhole.append(prevvert[2])
holeleft = len(self.hit[0])
holetop = len(self.hit)
holeright = holebottom = 0
objectpoints.append((vert[0][0], vert[0][27]))
self.polygons = []
for ind, id in enumerate(idtoindexobj):
holecoordlist = []
segments = []
for k, l in enumerate(idtoindexhole):
if l == id:
holecoordlist.append(holecoords[k])
prevsegpart = False
for segpart in holes[k]:
if not prevsegpart:
prevsegpart = segpart
continue
segments.append((prevsegpart[0], prevsegpart[1], segpart[0], segpart[1]))
prevsegpart = segpart
segments.append((prevsegpart[0], prevsegpart[1], holes[k][0][0], holes[k][0][1]))
if segments:
self.polygons.append({"vertices":objects[ind], "segments":segments, "holes":holecoordlist})
else:
self.polygons.append({"vertices":objects[ind]})
indtripolylist = []
for pol in self.polygons:
#here i am calling that triangulate function
indtripolylist.append(triangle.triangulate(pol, opts="q"))
#and finally convert what has been returned to coordinates of triangles (because it returns list of vertices and touples of indexes pointing to vertices)
self.tripolylist = []
for po in indtripolylist:
tmptriangles = []
for tr in po["triangles"]:
tmptriangles.append((po["vertices"][tr[0]], po["vertices"][tr[1]], po["vertices"][tr[2]]))
self.tripolylist.append(tmptriangles)
Thank you for your help.
This had me scratching my head for a while, your comments helped me get it working.
to see an example of the data you need to pass:
triangle.get_data('face')
to stop a polygon being "filled in" and keep it concave you can pass along the segments like this
segments = []
for i in range(len(verts)-1):
segments.append([int(i),int(i+1)])
segments.append([int(i+1),int(0)])
A = {'vertices':array(verts), 'segments':array(segments)}
to add a hole, you need to mark the verts and segments seperatly (warning: untested code)
vertmarks = []
for i in range(len(verts)):
vertmarks.append([2])
for i in range(len(hole)):
vertmarks.append([4])
segmarks = []
for i in range(len(segments)):
segmarks.append([2])
for i in range(len(holesegments)):
segmarks.append([4])
A = {'vertices':array(verts), 'segments':array(segments),
'segment_markers':array(segmarks), 'vertex_markers':array(vertmarks)}
'holes' should also be passed as a list of [x,y] locations - one inside each hole