Elliptical orbit in vpython - python

I have the following code. This code is simulation of orbiting objects around other objects, E.g. Solar system. As you run it, the objects orbit in circular trajectory.
import math
from vpython import *
lamp = local_light(pos=vector(0,0,0), color=color.yellow)
# Data in units according to the International System of Units
G = 6.67 * math.pow(10,-11)
# Mass of the Earth
ME = 5.973 * math.pow(10,24)
# Mass of the Moon
MM = 7.347 * math.pow(10,22)
# Mass of the Mars
MMa = 6.39 * math.pow(10,23)
# Mass of the Sun
MS = 1.989 * math.pow(10,30)
# Radius Earth-Moon
REM = 384400000
# Radius Sun-Earth
RSE = 149600000000
RMS = 227900000000
# Force Earth-Moon
FEM = G*(ME*MM)/math.pow(REM,2)
# Force Earth-Sun
FES = G*(MS*ME)/math.pow(RSE,2)
# Force Mars-Sun
FEMa = G*(MMa*MS)/math.pow(RMS,2)
# Angular velocity of the Moon with respect to the Earth (rad/s)
wM = math.sqrt(FEM/(MM * REM))
# Velocity v of the Moon (m/s)
vM = wM * REM
print("Angular velocity of the Moon with respect to the Earth: ",wM," rad/s")
print("Velocity v of the Moon: ",vM/1000," km/s")
# Angular velocity of the Earth with respect to the Sun(rad/s)
wE = math.sqrt(FES/(ME * RSE))
# Angular velocity of the Mars with respect to the Sun(rad/s)
wMa = math.sqrt(FEMa/(MMa * RMS))
# Velocity v of the Earth (m/s)
vE = wE * RSE
# Velocity v of the Earth (m/s)
vMa = wMa * RMS
print("Angular velocity of the Earth with respect to the Sun: ",wE," rad/s")
print("Velocity v of the Earth: ",vE/1000," km/s")
# Initial angular position
theta0 = 0
# Position at each time
def positionMoon(t):
theta = theta0 + wM * t
return theta
def positionMars(t):
theta = theta0 + wMa * t
return theta
def positionEarth(t):
theta = theta0 + wE * t
return theta
def fromDaysToS(d):
s = d*24*60*60
return s
def fromStoDays(s):
d = s/60/60/24
return d
def fromDaysToh(d):
h = d * 24
return h
# Graphical parameters
print("\nSimulation Earth-Moon-Sun motion\n")
days = 365
seconds = fromDaysToS(days)
print("Days: ",days)
print("Seconds: ",seconds)
v = vector(384,0,0)
E = sphere(pos = vector(1500,0,0), color = color.blue, radius = 60, make_trail=True)
Ma = sphere(pos = vector(2300,0,0), color = color.orange, radius = 30, make_trail=True)
M = sphere(pos = E.pos + v, color = color.white,radius = 10, make_trail=True)
S = sphere(pos = vector(0,0,0), color = color.yellow, radius=700)
t = 0
thetaTerra1 = 0
dt = 5000
dthetaE = positionEarth(t+dt)- positionEarth(t)
dthetaM = positionMoon(t+dt) - positionMoon(t)
dthetaMa = positionMars(t+dt) - positionMars(t)
print("delta t:",dt,"seconds. Days:",fromStoDays(dt),"hours:",fromDaysToh(fromStoDays(dt)),sep=" ")
print("Variation angular position of the Earth:",dthetaE,"rad/s that's to say",degrees(dthetaE),"degrees",sep=" ")
print("Variation angular position of the Moon:",dthetaM,"rad/s that's to say",degrees(dthetaM),"degrees",sep=" ")
while t < seconds:
rate(500)
thetaEarth = positionEarth(t+dt)- positionEarth(t)
thetaMoon = positionMoon(t+dt) - positionMoon(t)
thetaMars = positionMars(t+dt) - positionMars(t)
# Rotation only around z axis (0,0,1)
E.pos = rotate(E.pos,angle=thetaEarth,axis=vector(0,1,0))
Ma.pos = rotate(Ma.pos,angle=thetaMars,axis=vector(0,1,0))
v = rotate(v,angle=thetaMoon,axis=vector(0,1,0))
M.pos = E.pos + v
t += dt
I am wondering How to change the path of orbit to elliptical?
I have tried several ways but I could not manage to find any solution.
Thank you.
Thank you

This seems like more of a physics issue as opposed to a programming issue. The problem is that you are assuming that each of the orbits are circular when calculating velocity and integrating position linearly (e.g v * dt). This is not how you would go about calculating the trajectory of an orbiting body.
For the case of simplicity, we will assume all the masses are point masses so there aren't any weird gravity gradients or attitude dynamics to account for.
From there, you can refer to this MIT page. (http://web.mit.edu/12.004/TheLastHandout/PastHandouts/Chap03.Orbital.Dynamics.pdf) on orbit dynamics. On the 7th page, there is an equation relating the radial position from your centerbody as a function of a multitude of orbital parameters. It seems like you have every parameter except the eccentricity of the orbit. You can either look that up online or calculate it if you have detailed ephemeral data or apoapsis/periapsis information.
From that equation, you will see a phi - phi_0 term in the denominator. That is colloquially known as the true anomaly of the satellite. Instead of time, you would iterate on this true anomaly parameter from 0 to 360 to find your radial distance, and from true anomaly, inclination, right angle to the ascending node, and the argument of periapses, you can find the 3D cartesian coordinates at a specific true anomaly.
Going from true anomaly is a little less trivial. You will need to find the eccentric anomaly and then the mean anomaly at each eccentric anomaly step. You now have mean anomaly as a function of time. You can linearly interpolate between "nodes" at which you calculate the position with v * dt. You can calculate the velocity from using the vis-viva equation and dt would be the difference between the calculated time steps.
At each time step you can update the satellite's position in your python program and it will properly draw your trajectories.
For more information of the true anomaly, wikipedia has a good description of it: https://en.wikipedia.org/wiki/True_anomaly
For more information about orbital elements (which are needed to convert from radial position to cartesian coordinates): https://en.wikipedia.org/wiki/Orbital_elements

Related

3 Body Problem Outputs a spikey ball rather than an orbital path

I'm trying to solve the 3 body problem with solve_ivp and its runge kutta sim, but instead of a nice orbital path it outputs a spiked ball of death. I've tried changing the step sizes and step lengths all sorts, I have no idea why the graphs are so spikey, it makes no sense to me.
i have now implemented the velocity as was suggested but i may have done it wrong
What am I doing wrong?
Updated Code:
from scipy.integrate import solve_ivp
import numpy as np
import matplotlib.pyplot as plt
R = 150000000 #radius from centre of mass to stars orbit
#G = 1/(4*np.pi*np.pi) #Gravitational constant in AU^3/solar mass * years^2
G = 6.67e-11
M = 5e30 #mass of the stars assumed equal mass in solar mass
Omega = np.sqrt(G*M/R**3.0) #inverse of the orbital period of the stars
t = np.arange(0, 1000, 1)
x = 200000000
y = 200000000
vx0 = -0.0003
vy0 = 0.0003
X1 = R*np.cos(Omega*t)
X2 = -R*np.cos(Omega*t)
Y1 = R*np.sin(Omega*t)
Y2 = -R*np.sin(Omega*t) #cartesian coordinates of both stars 1 and 2
r1 = np.sqrt((x-X1)**2.0+(y-Y1)**2.0) #distance from planet to star 1 or 2
r2 = np.sqrt((x-X2)**2.0+(y-Y2)**2.0)
xacc = -G*M*((1/r1**2.0)*((x-X1)/r1)+(1/r2**2.0)*((x-X2)/r2))
yacc = -G*M*((1/r1**2.0)*((y-Y1)/r1)+(1/r2**2.0)*((y-Y2)/r2)) #x double dot and y double dot equations of motions
#when t = 0 we get the initial contditions
r1_0 = np.sqrt((x-R)**2.0+(y-0)**2.0)
r2_0 = np.sqrt((x+R)**2.0+(y+0)**2.0)
xacc0 = -G*M*((1/r1_0**2.0)*((x-R)/r1_0)+(1/r2_0**2.0)*((x+R)/r2_0))
yacc0 = -G*M*((1/r1_0**2.0)*((y-0)/r1_0)+(1/r2_0**2.0)*((y+0)/r2_0))
#inputs for runge-kutta algorithm
tp = Omega*t
r1p = r1/R
r2p = r2/R
xp = x/R
yp = y/R
X1p = X1/R
X2p = X2/R
Y1p = Y1/R
Y2p = Y2/R
#4 1st ode
#vx = dx/dt
#vy = dy/dt
#dvxp/dtp = -(((xp-X1p)/r1p**3.0)+((xp-X2p)/r2p**3.0))
#dvyp/dtp = -(((yp-Y1p)/r1p**3.0)+((yp-Y2p)/r2p**3.0))
epsilon = x*np.cos(Omega*t)+y*np.sin(Omega*t)
nave = -x*np.sin(Omega*t)+y*np.cos(Omega*t)
# =============================================================================
# def dxdt(x, t):
# return vx
#
# def dydt(y, t):
# return vy
# =============================================================================
def dvdt(t, state):
xp, yp = state
X1p = np.cos(Omega*t)
X2p = -np.cos(Omega*t)
Y1p = np.sin(Omega*t)
Y2p = -np.sin(Omega*t)
r1p = np.sqrt((xp-X1p)**2.0+(yp-Y1p)**2.0)
r2p = np.sqrt((xp-X2p)**2.0+(yp-Y2p)**2.0)
return (-(((xp-X1p)/(r1p**3.0))+((xp-X2p)/(r2p**3.0))),-(((yp-Y1p)/(r1p**3.0))+((yp-Y2p)/(r2p**3.0))))
def vel(t, state):
xp, yp, xv, yv = state
return (np.concatenate([[xv, yv], dvdt(t, [xp, yp]) ]))
p = (R, G, M, Omega)
initial_state = [xp, yp, vx0, vy0]
t_span = (0.0, 1000) #1000 years
result_solve_ivp_dvdt = solve_ivp(vel, t_span, initial_state, atol=0.1) #Runge Kutta
fig = plt.figure()
plt.plot(result_solve_ivp_dvdt.y[0,:], result_solve_ivp_dvdt.y[1,:])
plt.plot(X1p, Y1p)
plt.plot(X2p, Y2p)
Output:
Green is the stars plot and blue remains the velocity
Km and seconds
Years, AU and Solar Masses
You have produced the equation
dv/dt = a(x)
But then you used the acceleration, the derivative of the velocity, as the derivative of the position. This is physically wrong.
You should pass the function
lambda t, xv: np.concantenate([xv[2:], dvdt(xv[:2]) ])
to the solver, with a suitable initial state containing velocity components in addition to the position components.
In the 2-star system with the fixed orbit, the stars have distance 1. This distance, not the distance 0.5 to the center, should enter the computation of the angular velocity.
z_1 = 0.5*exp(2*pi*i*t), z_2 = -z_1 ==> z_1-z_2=2*z_1, abs(z_1-z_2)=1
z_1'' = -GM * (z_1-z_2)/abs(z_1-z_2)^3
-0.5*4*pi^2 = -GM or GM = 2*pi^2
Now insert a satellite into a circular radius at some radius R as if there was only one central mass 2M stationary at the origin
z_3 = R*exp(i*w*t)
z_3'' = -2GM * z_3/abs(z_3)^3
R^3*w^2=2GM
position (R,0), velocity (0,w*R)=(0,sqrt(2GM/R))
In python code
GM = 2*np.pi**2
R = 1.9
def kepler(t,u):
z1 = 0.5*np.exp(2j*np.pi*t)
z3 = u[0]+1j*u[1]
a = -GM*((z3-z1)/abs(z3-z1)**3+(z3+z1)/abs(z3+z1)**3)
return [u[2],u[3],a.real,a.imag]
res = solve_ivp(kepler,(0,17),[R,0,0,2*np.pi*(1/R)**0.5], atol=1e-8, rtol=1e-11)
print(res.message)
This gives a trajectory plot of
The effect of the binary system on the satellite is a continuous sequence of swing-by maneuvers, accelerating the angular speed until escape velocity is reached. With R=1.5 or smaller this happens with the first close encounter of satellite and closest star, so that the satellite is ejected immediately from the system.
Never-the-less, one can still get "spiky-ball" orbits. Setting R=1.6 in the above code, with tighter error tolerances and integrating to t=27 gives the trajectory

Planetary orbit shown as linear graph using rk4

I am trying to simulate the orbit of a planet around a star using the Runge-Kutta 4 method. After speaking to tutors my code should be correct. However, I am not generating my expected 2D orbital plot but instead a linear plot. This is my first time using solve_ivp to solve a second order differential. Can anyone explain why my plots are wrong?
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
# %% Define derivative function
def f(t, z):
x = z[0] # Position x
y = z[1] # Position y
dx = z[2] # Velocity x
dy = z[3] # Velocity y
G = 6.674 * 10**-11 # Gravitational constant
M = 2 # Mass of binary stars in solar masses
c = 2*G*M
r = np.sqrt(y**2 + x**2) # Distance of planet from stars
zdot = np.empty(6) # Array for integration solutions
zdot[0] = x
zdot[1] = y
zdot[2] = dx # Velocity x
zdot[3] = dy #Velocity y
zdot[4] = (-c/(r**3))*(x) # Acceleration x
zdot[5] = (-c/(r**3))*(y) # Acceleration y
return zdot
# %% Define time spans, initial values, and constants
tspan = np.linspace(0., 10000., 100000000)
xy0 = [0.03, -0.2, 0.008, 0.046, 0.2, 0.3] # Initial positions x,y in R and velocities
# %% Solve differential equation
sol = solve_ivp(lambda t, z: f(t, z), [tspan[0], tspan[-1]], xy0, t_eval=tspan)
# %% Plot
#plot
plt.grid()
plt.subplot(2, 2, 1)
plt.plot(sol.y[0],sol.y[1], color='b')
plt.subplot(2, 2, 2)
plt.plot(sol.t,sol.y[2], color='g')
plt.subplot(2, 2, 3)
plt.plot(sol.t,sol.y[4], color='r')
plt.show()
With the ODE function as given, you are solving in the first components the system
xdot = x
ydot = y
which has well-known exponential solutions. As the exponential factor is the same long both solutions, the xy-plot will move along a line through the origin.
The solution is of course to fill zdot[0:2] with dx,dy, and zdot[2:4] with ax,ay or ddx,ddy or however you want to name the components of the acceleration. Then the initial state also has only 4 components. Or you need to make and treat position and velocity as 3-dimensional.
You need to put units to your constants and care that all use the same units. G as cited is in m^3/kg/s^2, so that any M you define will be in kg, any length is in m and any velocity in m/s. Your constants might appear ridiculously small in that context.
It does not matter what the comment in the code says, there will be no magical conversion. You need to use actual conversion computations to get realistic numbers. For instance using the numbers
G = 6.67408e-11 # m^3 s^-2 kg^-1
AU = 149.597e9 # m
Msun = 1.988435e30 # kg
hour = 60*60 # seconds in an hour
day = hour * 24 # seconds in one day
year = 365.25*day # seconds in a year (not very astronomical)
one could guess that for a sensible binary system of two stars of equal mass one has
M = 2*Msun # now actually 2 sun masses
x0 = 0.03*AU
y0 = -0.2*AU
vx0 = 0.008*AU/day
vy0 = 0.046*AU/day
For the position only AU makes sense as unit, the speed could also be in AU/hour. By https://math.stackexchange.com/questions/4033996/developing-keplers-first-law and Cannot get RK4 to solve for position of orbiting body in Python the speed for a circular orbit of radius R=0.2AU around a combined mass of 2*M is
sqrt(2*M*G/R)=sqrt(4*Msun*G/(0.2*AU)) = 0.00320 * AU/hour = 0.07693 AU/day
which is ... not too unreasonable if the given speeds are actually in AU/day. Invoke the computations from https://math.stackexchange.com/questions/4050575/application-of-the-principle-of-conservation to compute if the Kepler ellipse would look sensible
r0 = (x0**2+y0**2)**0.5
dotr0 = (x0*vx0+y0*vy0)/r0
L = x0*vy0-y0*vx0 # r^2*dotphi = L constant, L^2 = G*M_center*R
dotphi0 = L/r0**2
R = L**2/(G*2*M)
wx = R/r0-1; wy = -dotr0*(R/(G*2*M))**0.5
E = (wx*wx+wy*wy)**0.5; psi = m.atan2(wy,wx)
print(f"half-axis R={R/AU} AU, eccentr. E={E}, init. angle psi={psi}")
print(f"min. rad. = {R/(1+E)/AU} AU, max. rad. = {R/(1-E)/AU} AU")
which returns
half-axis R=0.00750258 AU, eccentr. E=0.96934113, init. angle psi=3.02626659
min. rad. = 0.00380969 AU, max. rad. = 0.24471174 AU
This gives an extremely thin ellipse, which is not that astonishing as the initial velocity points almost directly to the gravity center.
orbit variants with half-day steps marked, lengths in AU
If the velocity components were swapped one would get
half-axis R=0.07528741 AU, eccentr. E=0.62778767, init. angle psi=3.12777251
min. rad. = 0.04625137 AU, max. rad. = 0.20227006 AU
This is a little more balanced.

Atomic Simulation Using Pygame [duplicate]

I would like to make some kind of solar system in pygame. I've managed to do a fixed one but I thought it would be more interesting to do one with planets moving around the sun and moons around planets etc. Is there a way I could do that (using pygame if possible)?
What I would like is :
Sun = pygame.draw.circle(...)
planet1 = pygame.draw.circle(...)
etc.
a = [planet1, planet2, ...]
for p in a:
move p[2] to pos(x, y)
That is what I think would work but I'm not sure how to do it. Also, I've thought about deleting the ancient planet and drawing a new one right next to it, but problem is I'm using random features (like colours, distance to the sun, number of planets in the system etc.) and it would have to keep these same features. Any ideas?
Thanks in advance!
You can implement gravity with Newton's Law of Universal Gravitation and Newton's Second Law to get the accelerations of the planets. Give each planet an initial position, velocity and mass. Acceleration is change in velocity a = v * dt, velocity is change in position v = r * dt, so we can integrate to find velocity and position.
Universal gravitation: F = G * m1 * m2 / r ** 2 where F is the magnitude of the force on the object, G is the gravitational constant, m1 and m2 are the masses of the objects and r is the distance between the two objects.
Newton's Second Law: F = m1 * a where a is the acceleration.
dt = 0.01 # size of time step
G = 100 # gravitational constant
def calcGravity(sun, planet):
'Returns acceleration of planet with respect to the sun'
diff_x = sun.x - planet.x
diff_y = sun.y - planet.y
acceleration = G * sun.mass / (diff_x ** 2 + diff_y ** 2)
accel_x = acceleration * diff_x / (diff_x ** 2 + diff_y ** 2)
accel_y = acceleration * diff_y / (diff_x ** 2 + diff_y ** 2)
return accel_x, accel_y
while True:
# update position based on velocity
planet.x += planet.vel_x * dt
planet.y += planet.vel_y * dt
# update velocity based on acceleration
accel_x, accel_y = calcGravity(sun, planet)
planet.vel_x += accel_x * dt
planet.vel_y += accel_y * dt
This can produce circular and elliptical orbits. Creating an orbiting moon requires a very small timestep (dt) for the numeric integration.
Note: this approach is subtly inaccurate due to the limits of numeric integration.
Sample implementation in pygame here, including three planets revolving around a sun, a moon, and a basic orbital transfer.
https://github.com/c2huc2hu/orbital_mechanics
Coordinates of a planet rotated about the Sun through some angle with respect to the X-axis are , where r is the distance to the Sun, theta is that angle, and (a, b) are the coordinates of the sun. Draw your circle centered at (x, y).
EDIT:
General elliptical orbit:
Where
r0 is the radius of a circular orbit with the same angular momentum, and e is the "eccentricity" of the ellipse

Skyfield visible area underneath EarthSatellite

How would I calculate the area below an EarthSatellite so that I can plot the swath of land covered as the satellite passes over?
Is there anything in Skyfield that would facilitate that?
Edit: Just thought I'd clarify what I mean by area below the satellite. I need to plot the maximum area below the satellite possible to observe given that the Earth is a spheroid. I know how to plot the satellite path, but now I need to plot some lines to represent the area visible by that satellite as it flies over the earth.
Your edit made it clear what you want. The visible area from a satellite can be easily calculated (when the earth is seen as a sphere). A good source to get some background on the visible portion can be found here. To calculate the visible area when the earth is seen as an oblate spheroid will be a lot harder (and maybe even impossible). I think it's better to reform that part of the question and post it on Mathematics.
If you want to calculate the visible area when the earth is seen as a sphere we need to make some adjustments in Skyfield. With a satellite loaded using the TLE api you can easily get a sub point with the position on earth. The library is calling this the Geocentric position, but actually it's the Geodetic position (where the earth is seen as an oblate spheroid). To correct this we need to adjust subpoint of the Geocentric class to use the calculation for the Geocentric position and not the Geodetic position. Due to a bug and missing information in the reverse_terra function we also need to replace that function. And we need to be able to retrieve the earth radius. This results in the following:
from skyfield import api
from skyfield.positionlib import ICRF, Geocentric
from skyfield.constants import (AU_M, ERAD, DEG2RAD,
IERS_2010_INVERSE_EARTH_FLATTENING, tau)
from skyfield.units import Angle
from numpy import einsum, sqrt, arctan2, pi, cos, sin
def reverse_terra(xyz_au, gast, iterations=3):
"""Convert a geocentric (x,y,z) at time `t` to latitude and longitude.
Returns a tuple of latitude, longitude, and elevation whose units
are radians and meters. Based on Dr. T.S. Kelso's quite helpful
article "Orbital Coordinate Systems, Part III":
https://www.celestrak.com/columns/v02n03/
"""
x, y, z = xyz_au
R = sqrt(x*x + y*y)
lon = (arctan2(y, x) - 15 * DEG2RAD * gast - pi) % tau - pi
lat = arctan2(z, R)
a = ERAD / AU_M
f = 1.0 / IERS_2010_INVERSE_EARTH_FLATTENING
e2 = 2.0*f - f*f
i = 0
C = 1.0
while i < iterations:
i += 1
C = 1.0 / sqrt(1.0 - e2 * (sin(lat) ** 2.0))
lat = arctan2(z + a * C * e2 * sin(lat), R)
elevation_m = ((R / cos(lat)) - a * C) * AU_M
earth_R = (a*C)*AU_M
return lat, lon, elevation_m, earth_R
def subpoint(self, iterations):
"""Return the latitude an longitude directly beneath this position.
Returns a :class:`~skyfield.toposlib.Topos` whose ``longitude``
and ``latitude`` are those of the point on the Earth's surface
directly beneath this position (according to the center of the
earth), and whose ``elevation`` is the height of this position
above the Earth's center.
"""
if self.center != 399: # TODO: should an __init__() check this?
raise ValueError("you can only ask for the geographic subpoint"
" of a position measured from Earth's center")
t = self.t
xyz_au = einsum('ij...,j...->i...', t.M, self.position.au)
lat, lon, elevation_m, self.earth_R = reverse_terra(xyz_au, t.gast, iterations)
from skyfield.toposlib import Topos
return Topos(latitude=Angle(radians=lat),
longitude=Angle(radians=lon),
elevation_m=elevation_m)
def earth_radius(self):
return self.earth_R
def satellite_visiable_area(earth_radius, satellite_elevation):
"""Returns the visible area from a satellite in square meters.
Formula is in the form is 2piR^2h/R+h where:
R = earth radius
h = satellite elevation from center of earth
"""
return ((2 * pi * ( earth_radius ** 2 ) *
( earth_radius + satellite_elevation)) /
(earth_radius + earth_radius + satellite_elevation))
stations_url = 'http://celestrak.com/NORAD/elements/stations.txt'
satellites = api.load.tle(stations_url)
satellite = satellites['ISS (ZARYA)']
print(satellite)
ts = api.load.timescale()
t = ts.now()
geocentric = satellite.at(t)
geocentric.subpoint = subpoint.__get__(geocentric, Geocentric)
geocentric.earth_radius = earth_radius.__get__(geocentric, Geocentric)
geodetic_sub = geocentric.subpoint(3)
print('Geodetic latitude:', geodetic_sub.latitude)
print('Geodetic longitude:', geodetic_sub.longitude)
print('Geodetic elevation (m)', int(geodetic_sub.elevation.m))
print('Geodetic earth radius (m)', int(geocentric.earth_radius()))
geocentric_sub = geocentric.subpoint(0)
print('Geocentric latitude:', geocentric_sub.latitude)
print('Geocentric longitude:', geocentric_sub.longitude)
print('Geocentric elevation (m)', int(geocentric_sub.elevation.m))
print('Geocentric earth radius (m)', int(geocentric.earth_radius()))
print('Visible area (m^2)', satellite_visiable_area(geocentric.earth_radius(),
geocentric_sub.elevation.m))

Using code to write a function that calculates values for Projectile motion

I have an assignment that asks me to use some given code to write a function which calculates the angle needed to hit a target 10 metres away.
here is the given code:
from visual import *
from visual.graph import * # For the graphing functions
#Create a graph display window (gdisplay)
win = gdisplay(xtitle="Distance [m]", ytitle="Height [m]")
#And a curve on this display
poscurve = gcurve(gdisplay=win, color=color.cyan)
#Target position (10 meters away)
target_pos = vector(10,0,0)
#Set the starting angle (in degrees)
angle = 45
#Set the magnitude of the starting velocity (in m/s)
v0 = 12.0
#Gravity vector (m/s**2)
g = vector(0, -9.8, 0)
#Create a vector for the projectile's velocity
velocity = v0 * vector(cos(anglepi/180), sin(anglepi/180), 0)
#and the position
position = vector(0,0,0)
dt = 0.01 # Time step
#Start loop. Each time taking a small step in time
while (position.y > 0) or (velocity.y > 0): # Change in position # dx = (dx/dt) * dt dx = velocity * dt
# Change in velocity
# dv = (dv/dt) * dt
dv = g * dt
# Update the position and velocity
position = position + dx
velocity = velocity + dv
# Plot the current position
poscurve.plot(pos=position)
#When loop finishes, velocity.y must be < 0, and position.y < 0
print "Landed at X position: ", position.x print "X distance to target: ", position.x - target_pos.x
How would I now write a function to calculate the required value? I have no idea where to start, any help would be greatly appreciated!
Thanks
You could use maths to work out an equation for the result.
This works out as:
range = 2v^2/g *cos(a)sin(a)
where v=initial velocity
a=angle
g=gravitational acceleration
You can use this python script to find the answer:
from math import cos
from math import sin
from math import radians
from math import fabs
a=0 # angle in degrees
target=10 # How far you want it to go in m
v=12 # initial velocity in m/s
g=9.81 #gravitational acceleration m/s/s
best_angle=None
nearest_answer=None
while a<45: # we only need to check up to 45 degrees
r = 2*v*v/g*cos(radians(a))*sin(radians(a))
if not nearest_answer or fabs(r-target)<fabs(nearest_answer-target):
nearest_answer = r
best_angle = a
print("{0} -> {1}".format(a,r))
a+=.1 # try increasing the angle a bit. The lower this is the more accurate the answer will be
print("Best angle={}".format(best_angle))

Categories