Related
I am using mplot3d from the mpl_toolkits library. When displaying the 3D surface on the figure I'm realized the axis were not positioned as I wished they would.
Let me show, I have added to the following screenshot the position of each axis:
Is there a way to change the position of the axes in order to get this result:
Here's the working code:
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
ax = Axes3D(plt.figure())
def f(x,y) :
return -x**2 - y**2
X = np.arange(-1, 1, 0.02)
Y = np.arange(-1, 1, 0.02)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
ax.plot_surface(X, Y, Z, alpha=0.5)
# Hide axes ticks
ax.set_xticks([-1,1])
ax.set_yticks([-1,1])
ax.set_zticks([-2,0])
ax.set_yticklabels([-1,1],rotation=-15, va='center', ha='right')
plt.show()
I have tried using xaxis.set_ticks_position('left') statement, but it doesn't work.
No documented methods, but with some hacking ideas from https://stackoverflow.com/a/15048653/1149007 you can.
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = ax = fig.add_subplot(111, projection='3d')
ax.view_init(30, 30)
def f(x,y) :
return -x**2 - y**2
X = np.arange(-1, 1, 0.02)
Y = np.arange(-1, 1, 0.02)
X, Y = np.meshgrid(X, Y)
Z = f(X, Y)
ax.plot_surface(X, Y, Z, alpha=0.5)
# Hide axes ticks
ax.set_xticks([-1,1])
ax.set_yticks([-1,1])
ax.set_zticks([-2,0])
ax.xaxis._axinfo['juggled'] = (0,0,0)
ax.yaxis._axinfo['juggled'] = (1,1,1)
ax.zaxis._axinfo['juggled'] = (2,2,2)
plt.show()
I can no idea of the meaning of the third number in triples. If set zeros nothing changes in the figure. So should look in the code for further tuning.
You can also look at related question Changing position of vertical (z) axis of 3D plot (Matplotlib)? with low level hacking of _PLANES property.
Something changed, code blow doesn't work, all axis hide...
ax.xaxis._axinfo['juggled'] = (0,0,0)
ax.yaxis._axinfo['juggled'] = (1,1,1)
ax.zaxis._axinfo['juggled'] = (2,2,2)
I suggest using the plot function to create a graph
I'm trying to graph a 3d mesh surface with matplotlib and constrain the limits of the graph. The X and Y axes are correctly constrained, but there is overflow in the Z-Axis.
What am I missing? Here's my code:
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits import mplot3d
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10,10))
x = np.linspace(-6,6,100)
y = np.linspace(-6,6,100)
X,Y = np.meshgrid(x,y)
def f(x,y):
return x**2 + 3*y
Z = f(X,Y)
ax = plt.axes(projection = '3d')
ax.plot_surface(X,Y,Z,cmap='viridis')
ax.title.set_text("z=x**2+3y")
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_zlim3d(zmin=-3,zmax=5)
ax.set_xlim3d(xmin=-6,xmax=6)
ax.set_ylim3d(ymin=-6,ymax=6)
plt.show()
The graph:
Edit:
When I add clipping/min/max to the Z values, the graph is a little better, but it sets z values outside the bounds to the bounds themselves. Both of the following suggestions do this. Perhaps it's because I'm on a mac?
z_tmp = np.maximum(np.minimum(5,Z),-3)
z_temp = np.clip(Z, -3, 5, None)
Your data is outside the axis boundaries. Try rotate the view and you will notice.
z = x**2 + 3*y
If you want to only show a defined area of the data you could add a max() min() limitation on the Z data to exclude the data outside your wanted limitations.
Z = f(X,Y)
z_tmp = np.maximum(np.minimum(5,Z),-3)
ax = plt.axes(projection = '3d')
ax.plot_surface(X,Y,z_tmp,cmap='viridis')
I'm not sure the matplotlib behaves as it should in your default case.
I'm trying to create a surface plot using Python Matplotlib. I've read the documentation in an attempt to figure out where my code was wrong or if I've left anything out, but was having trouble.
The code that I've written is
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def computeCost(X, y, theta):
m = len(y)
predictions = np.dot(X, theta)
squareErros = (predictions - y) ** 2
J = (1 / (2 * m)) * sum(squareErrors)
return J
data = np.loadtxt("./data1.txt", delimiter=',')
X = data[:, 0].reshape(-1, 1)
y = data[:, 1].reshape(-1, 1)
m = len(y)
X = np.concatenate((np.ones((m, 1)), X), axis=1)
theta0_vals = np.linspace(-10, 10, 100) # size (100,)
theta1_vals = np.linspace(-1, 4, 100) # size (100,)
J_vals = np.zeros((len(theta0_vals), len(theta1_vals)))
for i in range(len(x_values)):
for j in range(len(y_values)):
t = np.array([theta0_vals[i], theta1_vals[j]]).reshape(-1, 1)
J_vals[i][j] = computeCost(X, y, t) # size (100, 100)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(theta0_vals, theta1_vals, J_vals)
plt.show()
When I invoke plt.show() I get no output. The surface plot that I'm expecting to see is similar to this:
Would anybody be kind enough to let me know where my usage of the surface plot library went wrong? Thank you.
EDIT
I've tried to run the demo code provided here and it works fine. Here's the code for that:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
# Make data.
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# Customize the z axis.
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
I think I've figured out the issue by changing a couple of the last lines of code from
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(theta0_vals, theta1_vals, J_vals)
to
ax = plt.axes(projection='3d')
surf = ax.plot_surface(theta0_vals, theta1_vals, J_vals, rstride=1, cstride=1, cmap='viridis', edgecolor='none')
Making this change gives me a surface plot such that:
The link that gave me reference to this was this.
I am trying to plot the comun distribution of two normal distributed variables.
The code below plots one normal distributed variable. What would the code be for plotting two normal distributed variables?
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import math
mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(-3, 3, 100)
plt.plot(x,mlab.normpdf(x, mu, sigma))
plt.show()
It sounds like what you're looking for is a Multivariate Normal Distribution. This is implemented in scipy as scipy.stats.multivariate_normal. It's important to remember that you are passing a covariance matrix to the function. So to keep things simple keep the off diagonal elements as zero:
[X variance , 0 ]
[ 0 ,Y Variance]
Here is an example using this function and generating a 3D plot of the resulting distribution. I add the colormap to make seeing the curves easier but feel free to remove it.
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
from mpl_toolkits.mplot3d import Axes3D
#Parameters to set
mu_x = 0
variance_x = 3
mu_y = 0
variance_y = 15
#Create grid and multivariate normal
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X, Y = np.meshgrid(x,y)
pos = np.empty(X.shape + (2,))
pos[:, :, 0] = X; pos[:, :, 1] = Y
rv = multivariate_normal([mu_x, mu_y], [[variance_x, 0], [0, variance_y]])
#Make a 3D plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, rv.pdf(pos),cmap='viridis',linewidth=0)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()
Giving you this plot:
Edit the method used below was deprecated in Matplotlib v2.2 and removed in v3.1
A simpler version is available through matplotlib.mlab.bivariate_normal
It takes the following arguments so you don't need to worry about matrices
matplotlib.mlab.bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0)
Here X, and Y are again the result of a meshgrid so using this to recreate the above plot:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.mlab import bivariate_normal
from mpl_toolkits.mplot3d import Axes3D
#Parameters to set
mu_x = 0
sigma_x = np.sqrt(3)
mu_y = 0
sigma_y = np.sqrt(15)
#Create grid and multivariate normal
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X, Y = np.meshgrid(x,y)
Z = bivariate_normal(X,Y,sigma_x,sigma_y,mu_x,mu_y)
#Make a 3D plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z,cmap='viridis',linewidth=0)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()
Giving:
The following adaption to #Ianhi's code above returns a contour plot version of the 3D plot above.
import matplotlib.pyplot as plt
from matplotlib import style
style.use('fivethirtyeight')
import numpy as np
from scipy.stats import multivariate_normal
#Parameters to set
mu_x = 0
variance_x = 3
mu_y = 0
variance_y = 15
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X,Y = np.meshgrid(x,y)
pos = np.array([X.flatten(),Y.flatten()]).T
rv = multivariate_normal([mu_x, mu_y], [[variance_x, 0], [0, variance_y]])
fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)
ax0.contour(X, Y, rv.pdf(pos).reshape(500,500))
plt.show()
While the other answers are great, I wanted to achieve similar results while also illustrating the distribution with a scatter plot of the sample.
More details can be found here: Python 3d plot of multivariate gaussian distribution
The results looks like:
And is generated using the following code:
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from scipy.stats import multivariate_normal
# Sample parameters
mu = np.array([0, 0])
sigma = np.array([[0.7, 0.2], [0.2, 0.3]])
rv = multivariate_normal(mu, sigma)
sample = rv.rvs(500)
# Bounds parameters
x_abs = 2.5
y_abs = 2.5
x_grid, y_grid = np.mgrid[-x_abs:x_abs:.02, -y_abs:y_abs:.02]
pos = np.empty(x_grid.shape + (2,))
pos[:, :, 0] = x_grid
pos[:, :, 1] = y_grid
levels = np.linspace(0, 1, 40)
fig = plt.figure()
ax = fig.gca(projection='3d')
# Removes the grey panes in 3d plots
ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
# The heatmap
ax.contourf(x_grid, y_grid, 0.1 * rv.pdf(pos),
zdir='z', levels=0.1 * levels, alpha=0.9)
# The wireframe
ax.plot_wireframe(x_grid, y_grid, rv.pdf(
pos), rstride=10, cstride=10, color='k')
# The scatter. Note that the altitude is defined based on the pdf of the
# random variable
ax.scatter(sample[:, 0], sample[:, 1], 1.05 * rv.pdf(sample), c='k')
ax.legend()
ax.set_title("Gaussian sample and pdf")
ax.set_xlim3d(-x_abs, x_abs)
ax.set_ylim3d(-y_abs, y_abs)
ax.set_zlim3d(0, 1)
plt.show()
I have written code to plot a 3D surface of a parabaloid in matplotlib.
How would I rotate the figure so that the figure remains in place (i.e. no vertical or horizontal shifts) however it rotates around the line y = 0 and z = 0 through an angle of theta ( I have highlighted the line about which the figure should rotate in green). Here is an illustration to help visualize what I am describing:
For example, If the figure were rotated about the line through an angle of 180 degrees then this would result in the figure being flipped 'upside down' so that the point at the origin would be now be the maximum point.
I would also like to rotate the axis so that the colormap is maintained.
Here is the code for drawing the figure:
#parabaloid
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
#creating grid
y = np.linspace(-1,1,1000)
x = np.linspace(-1,1,1000)
x,y = np.meshgrid(x,y)
#set z values
z = x**2+y**2
#label axes
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
#plot figure
ax.plot_surface(x,y,z,linewidth=0, antialiased=False, shade = True, alpha = 0.5)
plt.show()
Something like this?
ax.view_init(-140, 30)
Insert it just before your plt.show() command.
Following my comment:
import mayavi.mlab as mlab
import numpy as np
x,y = np.mgrid[-1:1:0.001, -1:1:0.001]
z = x**2+y**2
s = mlab.mesh(x, y, z)
alpha = 30 # degrees
mlab.view(azimuth=0, elevation=90, roll=-90+alpha)
mlab.show()
or following #Tamas answer:
#parabaloid
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from math import sin, cos, pi
import matplotlib.cm as cm
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
#creating grid
y = np.linspace(-1,1,200)
x = np.linspace(-1,1,200)
x,y = np.meshgrid(x,y)
#set z values
z0 = x**2+y**2
# rotate the samples by pi / 4 radians around y
a = pi / 4
t = np.transpose(np.array([x,y,z0]), (1,2,0))
m = [[cos(a), 0, sin(a)],[0,1,0],[-sin(a), 0, cos(a)]]
x,y,z = np.transpose(np.dot(t, m), (2,0,1))
# or `np.dot(t, m)` instead `t # m`
#label axes
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
#plot figure
ax.plot_surface(x,y,z,linewidth=0, antialiased=False, shade = True, alpha = 0.5, facecolors=cm.viridis(z0))
plt.show()
The best I could come up with is to rotate the data itself.
#parabaloid
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from math import sin, cos, pi
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
#creating grid
y = np.linspace(-1,1,200)
x = np.linspace(-1,1,200)
x,y = np.meshgrid(x,y)
#set z values
z = x**2+y**2
# rotate the samples by pi / 4 radians around y
a = pi / 4
t = np.transpose(np.array([x,y,z]), (1,2,0))
m = [[cos(a), 0, sin(a)],[0,1,0],[-sin(a), 0, cos(a)]]
x,y,z = np.transpose(t # m, (2,0,1))
# or `np.dot(t, m)` instead `t # m`
#label axes
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
#plot figure
ax.plot_surface(x,y,z,linewidth=0, antialiased=False, shade = True, alpha = 0.5)
plt.show()
I can't seem to add a comment just yet but I wanted to make an amendment to Tamas' implementation. There is an issue where the surface is not rotated counter-clockwise to the axis (the y-axis in this case) where the y-axis is coming out of the page. Rather, it's rotated clockwise.
In order to rectify this, and to make it more straightforward, I construct the x, y and z grids and reshape them into straightforward lists on which we perform the rotation. Then I reshape them into grids in order to use the plot_surface() function:
import numpy as np
from matplotlib import pyplot as plt
from math import sin, cos, pi
import matplotlib.cm as cm
num_steps = 50
# Creating grid
y = np.linspace(-1,1,num_steps)
x = np.linspace(-1,1,num_steps)
x,y = np.meshgrid(x,y)
# Set z values
z = x**2+y**2
# Work with lists
x = x.reshape((-1))
y = y.reshape((-1))
z = z.reshape((-1))
# Rotate the samples by pi / 4 radians around y
a = pi / 4
t = np.array([x, y, z])
m = [[cos(a), 0, sin(a)],[0,1,0],[-sin(a), 0, cos(a)]]
x, y, z = np.dot(m, t)
ax = plt.axes(projection='3d')
# Label axes
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
# Plot the surface view it with y-axis coming out of the page.
ax.view_init(30, 90)
# Plot the surface.
ax.plot_surface(x.reshape(num_steps,num_steps), y.reshape(num_steps,num_steps), z.reshape(num_steps,num_steps));
here is the best solution:
- First, you have to perform your python script in the Spyder environment which is easy to get by downloading Anaconda. Once you perform your script in Spyder, all you have to do is to follow the next instructions:
Click on “Tools”.
Click on “Preferences”.
Click on “IPython console”.
Click on “Graphics”.
Here you’ll find an option called “Backend”, you have to change it from “Inline” to “Automaticlly”.
Finally, apply the performed changes, then Click on “OK”, and reset spyder!!!!.
Once you perform the prior steps, in theory, if you run your script, then the graphics created will appear in a different windows and you could interact with them through zooming and panning. In the case of 3d plots (3d surface) you will be able to orbit it.