Using RandomSearchCV, I managed to find a RandomForestRegressor with the best hyperparameters.
But, to this, I used a custom score function matching my specific needs.
Now, I don't know how to use
best_estimator_ - a RandomForestRegressor - returned by the search
with my custom scoring function.
Is there a way to pass a custom scoring function to a RandomForestRegressor?
Scoring function in RandomizedSearchCV will only calculate the score of the predicted data from the model for each combination of hyper-parameters specified in the grid, and the hyper-parameters with the highest average score on test folds wins.
It does not in any way alter the behaviour of the internal algorithm of RandomForest (other than finding the hyperparameters, of-course).
Now you have best_estimator_ (a RandomForestRegressor), with the best found hyper-parameters already set and the model already trained on the whole data you sent to RandomizedSearchCV (if you used refit=True, which is True by default).
So I'm not sure what you want to do with passing that scorer to the model. The best_estimator_ model can be directly used to get predictions on the new data by using the predict() method. After that, the custom scoring you used can be used to compare the predictions with the actual model. There's nothing more to it.
A simple example of this would be:
from scipy.stats import randint as sp_randint
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV, train_test_split
from sklearn.datasets import load_boston
from sklearn.metrics import r2_score, make_scorer
X, y = load_boston().data, load_boston().target
X_train, X_test, y_train, y_test = train_test_split(X, y)
clf = RandomForestRegressor()
# Your custom scoring strategy
def my_custom_score(y_true, y_pred):
return r2_score(y_true, y_pred)
# Wrapping it in make_scorer to able to use in RandomizedSearch
my_scorer = make_scorer(my_custom_score)
# Hyper Parameters to be tuned
param_dist = {"max_depth": [3, None],
"max_features": sp_randint(1, 11),
"min_samples_split": sp_randint(2, 11),}
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,
n_iter=20, scoring=my_scorer)
random_search.fit(X_train, y_train)
# Best found parameters set and model trained on X_train, y_train
best_clf = random_search.best_estimator_
# Get predictions on your new data
y_test_pred = best_clf.predict(X_test)
# Calculate your score on the predictions with respect to actual values
print(my_custom_score(y_test, y_test_pred))
Related
I would like to use scikit learn to predict with X a variable y. I would like to train a classifier on a training dataset using cross validation and then to apply this classifier to an unseen test dataset (as in https://www.nature.com/articles/s41586-022-04492-9)
from sklearn import datasets
from sklearn.model_selection import cross_validate
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
# Import dataset
X, y = datasets.load_iris(return_X_y=True)
# Create binary variable y
y[y == 0] = 1
# Divide in train and test set
x_train, x_test, y_train, y_test = train_test_split(X, y,test_size=75, random_state=4, stratify=y)
# Cross validation on the train data
cv_model = cross_validate(model, x_train, y_train, cv=5)
Now I would like to use this cross validated model and to apply it to the unseen test set. I am unable to find how.
It would be something like
result = cv_model.score(x_test, y_test)
Except this does not work
You cannot do that; you need to fit the model before using it to predict new data. cross_validate is just a convenience function to get the scores; as clearly mentioned in the documentation, it returns just that, i.e. scores, and not a (fitted) model:
Evaluate metric(s) by cross-validation and also record fit/score times.
[...]
Returns: scores : dict of float arrays of shape (n_splits,)
Array of scores of the estimator for each run of the cross validation.
A dict of arrays containing the score/time arrays for each scorer is returned.
I am working on a simple multioutput classification problem and noticed this error showing up whenever running the below code:
ValueError: Target is multilabel-indicator but average='binary'. Please
choose another average setting, one of [None, 'micro', 'macro', 'weighted', 'samples'].
I understand the problem it is referencing, i.e., when evaluating multilabel models one needs to explicitly set the type of averaging. Nevertheless, I am unable to figure out where this average argument should go to, since only accuracy_score, precision_score, recall_score built-in methods have this argument which I do not use explicitly in my code. Moreover, since I am doing a RandomizedSearch, I cannot just pass a precision_score(average='micro') to the scoring or refit arguments either, since precision_score() requires correct and true y labels to be passed. This is why this former SO question and this one here, both with a similar issue, didn't help.
My code with example data generation is as follows:
from sklearn.datasets import make_multilabel_classification
from sklearn.naive_bayes import MultinomialNB
from sklearn.multioutput import MultiOutputClassifier
from sklearn.model_selection import RandomizedSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
X, Y = make_multilabel_classification(
n_samples=1000,
n_features=2,
n_classes=5,
n_labels=2
)
pipe = Pipeline(
steps = [
('scaler', MinMaxScaler()),
('model', MultiOutputClassifier(MultinomialNB()))
]
)
search = RandomizedSearchCV(
estimator = pipe,
param_distributions={'model__estimator__alpha': (0.01,1)},
scoring = ['accuracy', 'precision', 'recall'],
refit = 'precision',
cv = 5
).fit(X, Y)
What am I missing?
From the scikit-learn docs, I see that you can pass a callable that returns a dictionary where the keys are the metric names and the values are the metric scores. This means you can write your own scoring function, which has to take the estimator, X_test, and y_test as inputs. This in turn must compute y_pred and use that to compute the scores you want to use. This you can do doing the built-in methods. There, you can specify which keyword arguments should be used to compute the scores. In code that would look like
def my_scorer(estimator, X_test, y_test) -> dict[str, float]:
y_pred = estimator.predict(X_test)
return {
'accuracy': accuracy_score(y_test, y_pred),
'precision': precision_score(y_test, y_pred, average='micro'),
'recall': recall_score(y_test, y_pred, average='micro'),
}
search = RandomizedSearchCV(
estimator = pipe,
param_distributions={'model__estimator__alpha': (0.01,1)},
scoring = my_scorer,
refit = 'precision',
cv = 5
).fit(X, Y)
From the table of scoring metrics, note f1_micro, f1_macro, etc., and the notes "suffixes apply as with ‘f1’" given for precision and recall. So e.g.
search = RandomizedSearchCV(
...
scoring = ['accuracy', 'precision_micro', 'recall_macro'],
...
)
I have a data set with some float column features (X_train) and a continuous target (y_train).
I want to run KNN regression on the data set, and I want to (1) do a grid search for hyperparameter tuning and (2) run cross validation on the training.
I wrote this code:
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.model_selection import RepeatedStratifiedKFold
X_train, X_test, y_train, y_test = train_test_split(scaled_df, target, test_size=0.2)
cv_method = RepeatedStratifiedKFold(n_splits=5,
n_repeats=3,
random_state=999)
# Define our candidate hyperparameters
hp_candidates = [{'n_neighbors': [2,3,4,5,6,7,8,9,10,11,12,13,14,15], 'weights': ['uniform','distance'],'p':[1,2,5]}]
# Search for best hyperparameters
grid = GridSearchCV(estimator=KNeighborsRegressor(),
param_grid=hp_candidates,
cv=cv_method,
verbose=1,
scoring='accuracy',
return_train_score=True)
grid.fit(X_train,y_train)
The error I get is:
Supported target types are: ('binary', 'multiclass'). Got 'continuous' instead.
I understand the error, that I can only do this method for KNN in classification, not regression.
But what I can't find is how to edit this code to make it suitable for KNN regression? Can someone explain to me how this could be done?
(So the ultimate aim is I have a data set, I want to tune the parameters, do cross validation, and output the best model based on above and get back some accuracy scores, ideally scores that have comparable scores in other algorithms and are not specific to KNN, so I can compare accuracy).
Also just to mention, this is my first attempt at KNN in scikitlearn, so all comments/critic is welcome.
Yes you can use GridSearchCV with the KNeighboursRegressor.
As you have a metric choice problem,
you can read the metrics documentation here : https://scikit-learn.org/stable/modules/model_evaluation.html
The metrics appropriate for a regression problem are different than from classification problems, and you have the list here for appropritae regression metrics:
‘explained_variance’
‘max_error’
‘neg_mean_absolute_error’
‘neg_mean_squared_error’
‘neg_root_mean_squared_error’
‘neg_mean_squared_log_error’
‘neg_median_absolute_error’
‘r2’
‘neg_mean_poisson_deviance’
‘neg_mean_gamma_deviance’
‘neg_mean_absolute_percentage_error’
So you can chose one to replace "accuracy" and test it.
I'm using sklearn to do some machine learning. I often use GridSearchCV to explore hyperparameters and perform cross-validation. Using this, I can specify a scoring function, like this:
scores = -cross_val_score(svr, X, Y, cv=10, scoring='neg_mean_squared_error')
However, I want to train my SVR model using mean squared error. Unfortunately, there's no scoring parameter in either the constructor for SVR or the fit method.
How should I do this?
Thanks!
I typically use Pipeline to do it. You can create list of pipelines including SVR model (and others if you want). Then, you can apply GridSearchCV where putting pipeline in as your argument.
Here, you can add params_grid where searching space can be defined as pipelinename__paramname (double underscore in between). For example, I have pipeline name svr and I want to search on parameter C, I can put the key in my parameter dictionary as svr__C.
from sklearn.pipeline import Pipeline
from sklearn.model_selection import cross_val_score, GridSearchCV
from sklearn.svm import SVR
c_range = np.arange(1, 10, 1)
pipeline = Pipeline([('svr', SVR())])
params_grid = {'svr__C': c_range}
# grid search with 3-fold cross validation
gridsearch_model = GridSearchCV(pipeline, params_grid,
cv=3, scoring='neg_mean_squared_error')
Then, you can do the same procedure by fitting training data and find best score and parameters
gridsearch_model.fit(X_train, y_train)
print(gridsearch_model.best_params_, gridsearch_model.best_score_)
You can also use cross_val_score to find the score:
cross_val_score(gridsearch_model, X_train, y_train,
cv=3, scoring='neg_mean_squared_error')
Hope this helps!
I'm confused about using cross_val_predict in a test data set.
I created a simple Random Forest model and used cross_val_predict to make predictions:
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_predict, KFold
lr = RandomForestClassifier(random_state=1, class_weight="balanced", n_estimators=25, max_depth=6)
kf = KFold(train_df.shape[0], random_state=1)
predictions = cross_val_predict(lr,train_df[features_columns], train_df["target"], cv=kf)
predictions = pd.Series(predictions)
I'm confused on the next step here. How do I use what is learnt above to make predictions on the test data set?
I don't think cross_val_score or cross_val_predict uses fit before predicting. It does it on the fly. If you look at the documentation (section 3.1.1.1), you'll see that they never mention fit anywhere.
As #DmitryPolonskiy commented, the model has to be trained (with the fit method) before it can be used to predict.
# Train the model (a.k.a. `fit` training data to it).
lr.fit(train_df[features_columns], train_df["target"])
# Use the model to make predictions based on testing data.
y_pred = lr.predict(test_df[feature_columns])
# Compare the predicted y values to actual y values.
accuracy = (y_pred == test_df["target"]).mean()
cross_val_predict is a method of cross validation, which lets you determine the accuracy of your model. Take a look at sklearn's cross-validation page.
I am not sure the question was answered. I had a similar thought. I want compare the results (Accuracy for example) with the method that does not apply CV. The CV valiadte accuracy is on the X_train and y_train. The other method fit the model using X_trian and y_train, tested on the X_test and y_test. So the comparison is not fair since they are on different datasets.
What you can do is using the estimator returned by the cross_validate
lr_fit = cross_validate(lr, train_df[features_columns], train_df["target"], cv=kf, return_estimator=Ture)
y_pred = lr_fit.predict(test_df[feature_columns])
accuracy = (y_pred == test_df["target"]).mean()