Delete columns but keep specific values pandas df - python

I'm sure this is in SO somewhere but I can't seem to find it. I'm trying to remove or select designated columns in a pandas df. But I want to keep certain values or strings from those deleted columns.
For the df below I want to keep 'Big','Cat' in Col B,C but delete everything else.
import pandas as pd
d = ({
'A' : ['A','Keep','A','Value'],
'B' : ['Big','X','Big','Y'],
'C' : ['Cat','X','Cat','Y'],
})
df = pd.DataFrame(data=d)
If I do either the following it only selects that row.
Big = df[df['B'] == 'Big']
Cat = df[df['C'] == 'Cat']
My intended output is:
A B C
0 A Big Cat
1 Keep
2 A Big Cat
3 Value
I need something like x = df[df['B','C'] != 'Big','Cat']

Seems like you want to keep only some values and have empty string on ohters
Use np.where
keeps = ['Big', 'Cat']
df['B'] = np.where(df.B.isin(keeps), df.B, '')
df['C'] = np.where(df.C.isin(keeps), df.C, '')
A B C
0 A Big Cat
1 Keep
2 A Big Cat
3 Value
Another solution using df.where
cols = ['B', 'C']
df[cols] = df[cols].where(df.isin(keeps)).fillna('')
A B C
0 A Big Cat
1 Keep
2 A Big Cat
3 Value

IIUC
Update
df[['B','C']]=df[['B','C']][df[['B','C']].isin(['Big','Cat'])].fillna('')
df
Out[30]:
A B C
0 A Big Cat
1 Keep
2 A Big Cat
3 Value

You can filter on column combinations via NumPy and np.ndarray.all:
mask = (df[['B', 'C']].values != ['Big', 'Cat']).all(1)
df.loc[mask, ['B', 'C']] = ''
print(df)
A B C
0 A Big Cat
1 Keep
2 A Big Cat
3 Value

Or this:
df[['B','C']]=df[['B','C']].apply(lambda row: row if row.tolist()==['Big','Cat'] else ['',''],axis=1)
print(df)
Output:
A B C
0 A Big Cat
1 Keep
2 A Big Cat
3 Value

Perhaps a concise version:
df.loc[df['B'] != 'Big', 'B'] = ''
df.loc[df['C'] != 'Cat', 'C'] = ''
print(df)
Output:
A B C
0 A Big Cat
1 Keep
2 A Big Cat
3 Value

Related

Is there any way add a columns with specific condition?

There is a data frame.
I would like to add column 'e' after checking below conditions.
if component of 'c' is in column 'a' AND component of 'd' is in column 'b' at same row , then component of e is OK
else ""
import pandas as pd
import numpy as np
A = {'a':[0,2,1,4], 'b':[4,5,1,7],'c':['1','2','3','6'], 'd':['1','4','2','9']}
df = pd.DataFrame(A)
The result I want to get is
A = {'a':[0,2,1,4], 'b':[4,5,1,7],'c':['1','2','3','6'], 'd':['1','4','2','9'], 'e':['OK','','','']}
You can merge df with itself on ['a', 'b'] on the left and ['c', 'd'] on the right. If index 'survives' the merge, then e should be OK:
df['e'] = np.where(
df.index.isin(df.merge(df, left_on=['a', 'b'], right_on=['c', 'd']).index),
'OK', '')
df
Output:
a b c d e
0 0 4 1 1 OK
1 2 5 2 4
2 1 1 3 2
3 4 7 6 9
P.S. Before the merge, we need to convert a and b columns to str type (or c and d to numeric), so that we can compare c and a, and d and b:
df[['a', 'b']] = df[['a', 'b']].astype(str)

Python DataFrame : Split data in rows based on custom value?

I have a dataframe with column a. I need to get data after second _.
a
0 abc_def12_0520_123
1 def_ghij123_0120_456
raw_data = {'a': ['abc_def12_0520_123', 'def_ghij123_0120_456']}
df = pd.DataFrame(raw_data, columns = ['a'])
Output:
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456
What I have tried:
df['b'] = df.number.str.replace('\D+', '')
I tried removing alphabets first, But its getting complex. Any suggestions
Here is how:
df['b'] = ['_'.join(s.split('_')[2:]) for s in df['a']]
print(df)
Output:
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456
Explanation:
lst = ['_'.join(s.split('_')[2:]) for s in df['a']]
is the equivalent of:
lst = []
for s in df['a']:
a = s.split('_')[2:] # List all strings in list of substrings splitted '_' besides the first 2
lst.append('_'.join(a))
Try:
df['b'] = df['a'].str.split('_',2).str[-1]
a b
0 abc_def12_0520_123 0520_123
1 def_ghij123_0120_456 0120_456

How to merge strings pandas df

I am trying merge specific strings in a pandas df. The df below is just an example. The values in my df will differ but the basic rules will apply. I basically want to merge all rows until there's a 4 letter string.
Whilst the 4 letter string in this df is always Excl, my df will contain numerous 4 letter strings.
import pandas as pd
d = ({
'A' : ['Include','Inclu','Incl','Inc'],
'B' : ['Excl','de','ude','l'],
'C' : ['X','Excl','Excl','ude'],
'D' : ['','Y','ABC','Excl'],
})
df = pd.DataFrame(data=d)
Out:
A B C D
0 Include Excl X
1 Inclu de Excl Y
2 Incl ude Excl ABC
3 Inc l ude Excl
Intended Output:
A B C D
0 Include Excl X
1 Include Excl Y
2 Include Excl ABC
3 Include Excl
So row 0 stays the same as col B has 4 letters. Row 1 merges Col A,B as Col C 4 letters. Row 2 stays the same as above. Row 3 merges Col A,B,C as Col D has 4 letters.
I have tried to do this manually by merging all columns and then go back and removing unwanted values.
df["Com"] = df["A"].map(str) + df["B"] + df["C"]
But I would have to manually go through each row and remove different lengths of letters.
The above df is just an example. The central similarity is I need to merge everything before the 4 letter string.
You could do something like
mask = (df.iloc[:, 1:].applymap(len) == 4).cumsum(1) == 0
df.A = df.A + df.iloc[:, 1:][mask].apply(lambda x: x.str.cat(), 1)
df.iloc[:, 1:] = df.iloc[:, 1:][~mask].fillna('')
try this,
Sorry for the clumsy solution, I'll try to improve the performance ,
temp=df.eq('Excl').shift(-1,axis=1)
df['end']= temp.apply(lambda x:x.argmax(),axis=1)
res=df.apply(lambda x:x.loc[:x['end']].sum(),axis=1)
mask=temp.replace(False,np.NaN).fillna(method='ffill').fillna(False).astype(bool)
del df['end']
df[:]=np.where(mask,'',df)
df['A']=res
print df
Output:
A B C D
0 Include Excl X
1 Include Excl Y
2 Include Excl ABC
3 Include Excl
Improved solution:
res= df.apply(lambda x:x.loc[:x.eq('Excl').shift(-1).argmax()].sum(),axis=1)
mask=df.eq('Excl').shift(-1,axis=1).replace(False,np.NaN).fillna(method='ffill').fillna(False).astype(bool)
df[:]=np.where(mask,'',df)
df['A']=res
More simplified solution:
t=df.eq('Excl').shift(-1,axis=1)
res= df.apply(lambda x:x.loc[:x.eq('Excl').shift(-1).argmax()].sum(),axis=1)
df[:]=np.where(t.fillna(0).astype(int).cumsum() >= 1,'',df)
df['A']=res
I am giving you a rough approach,
Here, we are finding the location of the 'Excl' and merging the column values up it so as to obtain our desired output.
ls=[]
for i in range(len(df)):
end=(df.loc[i,:].index[(df.loc[i,:]=='Excl')][0])
ls.append(''.join(df.loc[i,:end].replace({'Excl':''}).values))
df['A']=ls

counting number of customers per week during 6 years [duplicate]

I am using .size() on a groupby result in order to count how many items are in each group.
I would like the result to be saved to a new column name without manually editing the column names array, how can it be done?
This is what I have tried:
grpd = df.groupby(['A','B'])
grpd['size'] = grpd.size()
grpd
and the error I got:
TypeError: 'DataFrameGroupBy' object does not support item assignment
(on the second line)
The .size() built-in method of DataFrameGroupBy objects actually returns a Series object with the group sizes and not a DataFrame. If you want a DataFrame whose column is the group sizes, indexed by the groups, with a custom name, you can use the .to_frame() method and use the desired column name as its argument.
grpd = df.groupby(['A','B']).size().to_frame('size')
If you wanted the groups to be columns again you could add a .reset_index() at the end.
You need transform size - len of df is same as before:
Notice:
Here it is necessary to add one column after groupby, else you get an error. Because GroupBy.size count NaNs too, what column is used is not important. All columns working same.
import pandas as pd
df = pd.DataFrame({'A': ['x', 'x', 'x','y','y']
, 'B': ['a', 'c', 'c','b','b']})
print (df)
A B
0 x a
1 x c
2 x c
3 y b
4 y b
df['size'] = df.groupby(['A', 'B'])['A'].transform('size')
print (df)
A B size
0 x a 1
1 x c 2
2 x c 2
3 y b 2
4 y b 2
If need set column name in aggregating df - len of df is obviously NOT same as before:
import pandas as pd
df = pd.DataFrame({'A': ['x', 'x', 'x','y','y']
, 'B': ['a', 'c', 'c','b','b']})
print (df)
A B
0 x a
1 x c
2 x c
3 y b
4 y b
df = df.groupby(['A', 'B']).size().reset_index(name='Size')
print (df)
A B Size
0 x a 1
1 x c 2
2 y b 2
The result of df.groupby(...) is not a DataFrame. To get a DataFrame back, you have to apply a function to each group, transform each element of a group, or filter the groups.
It seems like you want a DataFrame that contains (1) all your original data in df and (2) the count of how much data is in each group. These things have different lengths, so if they need to go into the same DataFrame, you'll need to list the size redundantly, i.e., for each row in each group.
df['size'] = df.groupby(['A','B']).transform(np.size)
(Aside: It's helpful if you can show succinct sample input and expected results.)
You can set the as_index parameter in groupby to False to get a DataFrame instead of a Series:
df = pd.DataFrame({'A': ['a', 'a', 'b', 'b'], 'B': [1, 2, 2, 2]})
df.groupby(['A', 'B'], as_index=False).size()
Output:
A B size
0 a 1 1
1 a 2 1
2 b 2 2
lets say n is the name of dataframe and cst is the no of items being repeted.
Below code gives the count in next column
cstn=Counter(n.cst)
cstlist = pd.DataFrame.from_dict(cstn, orient='index').reset_index()
cstlist.columns=['name','cnt']
n['cnt']=n['cst'].map(cstlist.loc[:, ['name','cnt']].set_index('name').iloc[:,0].to_dict())
Hope this will work

Add row counts to entire dataframe [duplicate]

I am using .size() on a groupby result in order to count how many items are in each group.
I would like the result to be saved to a new column name without manually editing the column names array, how can it be done?
This is what I have tried:
grpd = df.groupby(['A','B'])
grpd['size'] = grpd.size()
grpd
and the error I got:
TypeError: 'DataFrameGroupBy' object does not support item assignment
(on the second line)
The .size() built-in method of DataFrameGroupBy objects actually returns a Series object with the group sizes and not a DataFrame. If you want a DataFrame whose column is the group sizes, indexed by the groups, with a custom name, you can use the .to_frame() method and use the desired column name as its argument.
grpd = df.groupby(['A','B']).size().to_frame('size')
If you wanted the groups to be columns again you could add a .reset_index() at the end.
You need transform size - len of df is same as before:
Notice:
Here it is necessary to add one column after groupby, else you get an error. Because GroupBy.size count NaNs too, what column is used is not important. All columns working same.
import pandas as pd
df = pd.DataFrame({'A': ['x', 'x', 'x','y','y']
, 'B': ['a', 'c', 'c','b','b']})
print (df)
A B
0 x a
1 x c
2 x c
3 y b
4 y b
df['size'] = df.groupby(['A', 'B'])['A'].transform('size')
print (df)
A B size
0 x a 1
1 x c 2
2 x c 2
3 y b 2
4 y b 2
If need set column name in aggregating df - len of df is obviously NOT same as before:
import pandas as pd
df = pd.DataFrame({'A': ['x', 'x', 'x','y','y']
, 'B': ['a', 'c', 'c','b','b']})
print (df)
A B
0 x a
1 x c
2 x c
3 y b
4 y b
df = df.groupby(['A', 'B']).size().reset_index(name='Size')
print (df)
A B Size
0 x a 1
1 x c 2
2 y b 2
The result of df.groupby(...) is not a DataFrame. To get a DataFrame back, you have to apply a function to each group, transform each element of a group, or filter the groups.
It seems like you want a DataFrame that contains (1) all your original data in df and (2) the count of how much data is in each group. These things have different lengths, so if they need to go into the same DataFrame, you'll need to list the size redundantly, i.e., for each row in each group.
df['size'] = df.groupby(['A','B']).transform(np.size)
(Aside: It's helpful if you can show succinct sample input and expected results.)
You can set the as_index parameter in groupby to False to get a DataFrame instead of a Series:
df = pd.DataFrame({'A': ['a', 'a', 'b', 'b'], 'B': [1, 2, 2, 2]})
df.groupby(['A', 'B'], as_index=False).size()
Output:
A B size
0 a 1 1
1 a 2 1
2 b 2 2
lets say n is the name of dataframe and cst is the no of items being repeted.
Below code gives the count in next column
cstn=Counter(n.cst)
cstlist = pd.DataFrame.from_dict(cstn, orient='index').reset_index()
cstlist.columns=['name','cnt']
n['cnt']=n['cst'].map(cstlist.loc[:, ['name','cnt']].set_index('name').iloc[:,0].to_dict())
Hope this will work

Categories