Compatibility Between PyPubSub and PyQt - python

I have been trying to find the most elegant way to decouple my programs from the GUI, such that I can change my front-end without needing to re-write a whole lot of code.
I work with threads a lot, so I often have the need to notify the main GUI thread of asynchronous happenings either through events (for wxPython) or signals (for PyQt). I have experimented a bit with PyPubSub, which may be what I am looking for, but while there are tons of wxPython examples (since it was originally included with it in early development).
I am not aware if there is a 'proper' way to use it with PyQt without running into race conditions. If anyone has some insight on this, I would really appreciate it!

PyPubSub's sendMessage() will call listeners in the same thread as the sender (default Python behavior). In a multithreaded GUI app, you must ensure that listeners that interact with GUI are called in the main thread. Also threads execute independently, so you need each thread to call its own listeners, based on a timed or idle callback mechanism.
The way to call listeners in the correct thread in PyQt is via signals. PyPubSub can still be used in a multithreaded PyQt GUI, but the mechanism used to transfer the "message" from sender to listener would have to be via a signal. There isn't one best way to do it I don't think, depends on details of your app design. You could for example have a QtPubsubHandler that derives from QObject and gets created in main thread, and a QtPubsubSender class that also derives from QObject and gets created in each worker thread. The QtPubSubSender defines a custom signal, say pubsub, which QtPubsubHandler connects to. Then to send a message, the sender does qtPubsubHandler.sendMessage(topic, **data), which causes a pubsub signal to get emitted, which Qt properly queues and eventually signals the QtPubsubHandler, which actually calls pub.sendMessage().
There are many other ways, but you get the general idea: two classes that derive from QObject, and one of them does the actual sending in the same thread as the intended listener, the other uses a signal so everything is thread safe. Actually you don't have to use PyQt signals: but then you would have to have a queue in main thread and have an idle callback that allows it to process any items on the queue.

Related

Restart QThread with GUI

I am using QThread to do some calculations in a separate Thread.
The Thread gets started by a button click, witch launches the function StartMeasurement().
The Thread can finish the process by itself (after finished the calculations)
and emits the PyQT Signal finished. Or the thread can be stopped by the User by the stopBtn click.
The terminate() function is working, but I get a lot of troubles when I try to start the thread again.
Is it recommendable to use the movetoThread() approach here?
Or how could I ensure that the thread is stopped correctly to enable a proper restart. (means, starting new!)
# starts the measurment in a Thread: StartMeasurement()
def StartMeasurement(self):
self.thread = measure.CMeasurementThread(self.osziObj, self.genObj, self.measSetup)
self.thread.newSample.connect(self.plotNewSample)
self.thread.finished.connect(self.Done)
self.stopBtn.clicked.connect(self.thread.terminate)
self.stopBtn.clicked.connect(self.Stop)
self.thread.start()
It's not a problem. The general practice when working with QThread is to connect its finished() signal to the deleteLater() slot of the objects that have been moved to the separate thread via moveToThread(). It's done in order to properly manage the memory when you then destroy your thread because it's assumed that you will first quit the thread and then destroy its instance. ;) This should tell you that stopping a thread has nothing to do with the destruction of those objects UNLESS you have established the connection I've described above.
It is perfectly fine to restart a thread IF you have stopped it properly using quit() and wait() to actually wait untill the stopping is completed.
However my advice is to not do that unless that extra thread has a huge impact on your application for some reason (highly unlikely with modern machines).
Instead of restarting the thread consider the following options:
implement a pause flag that just makes the thread run without doing anything if it's set to true (I've used this example of mine many times to demonstrate such behaviour (check the worker.cpp and the doWork() function in particular) - it's in C++ but it can be ported to PyQt in no time)
use QRunnable - its designed to run something and then (unless autoDelete is set to true) return to the thread pool. It's really nice if you have tasks that occur every once in a while and you don't need a constatly running separate thread. If you want to use signals and slots (to get the result of the calculation done inside the QRunnable::run() you will have to first inherit from QObject and then from QRunnable
Use futures (check the Qt Concurrent module)
I suggest that you first read the Example use cases for the various threading technologies Qt provides.

PyQt : Emtting signal from QThread to QWidget

I've been meaning to implement a chat client/server, with PyQt handling the GUI front. The problem I'm facing is when I want to tell an already connected client that another new client has joined. Initially I worked it around by adding a "refresh users" button which sends the client the updated list. However, now when a client has to message another, I realise that I will obviously have to create a separate thread which keeps on checking for data from the server. I have trying since yesterday, reading various posts/answers, forums but still can't get this to work.
What I want is a separate thread which is executed at the start of the program that checks for data from the server and can emit signals that instigate the function in a GUI thread to change the users list. How do I make a thread that works constantly and emits signals that can be caught by the main GUI loop ? And how should I catch the signal ?
Same as with other Qt components: you create a QThread for your network management, the QThread derived class emits signals with some data coming from network; on the main thread side, you have QObjects and QWidgets that you connect to those signals. Take a look at the following (in that order):
Qt Threading Basics
Thread Support in Qt
How to use QThreads
Another How to use QThreads
what is the correct way to implement a QThread... (example please...)
Once you have read these and tried your own code, then you can post a new question with more specific issues you are having. Otherwise, your question is too broad.

Why Signals and Slots in PyQt?

I'm learning PyQt (I haven't used C++ Qt before).
I don't understand the reason for signals and slots. That is, it seems I can do everything by calling the methods of classes directly. Doing so seems more Pythonic, uses less code and is easier to read. What am I missing?
For clarification, I'm asking why I would do this:
def mouseReleaseEvent(self):
self.clicksignal.connect(ui.iconClicked)
self.clicksignal.emit()
when I can do this:
def mouseReleaseEvent(self):
ui.iconClicked()
The reason signals and slots exist is because you cannot change the GUI from any other thread of the application except the UI thread.
If you have some heavy CPU intensive calculation to do, or any task that waits for IO or something like that... if you do it the UI thread (for example if you fetch a url or something that lasts some time), your UI thread will be busy, and the GUI event loop wont be able to update itself, so the GUI will seem frozen.
To do these kind of operations. you execute them in a separate (background worker) thread, so the UI thread can continue updating the GUI.
Now the problem is that you cannot access the elements of the GUI and change their state from any other thread except the UI thread. So signals and slots are introduced. When you emit a signal it is guaranteed to be caught in the UI thread, and the slot will be executed in the UI thread.
I'm not exactly sure what you try to accomplish in your example, but this is the main reason why signals and slots exist. Basically UI thread should only deal with the UI, and everything else should be done in the background worker thread that sends a signal that gets caught in the UI thread and the slot that update the GUI is executed in the UI thread.
Well... yes, you can. But you need to think bigger. In your example code, caller of mouseReleaseEvent must have the reference to the object that receives the notification, and explicitly invoke appropriate method. Using slot & signals mechanism decouples event producer (e.g. widget) from event consumer - pretty much arbitrary other object. This makes setting up communication and control flow easier and external to the low-level UI components, which is the good thing. It also makes such components reusable - by moving wiring code outside, we make it independent of the application logic.
In addition to the answers by #ViktorKerkez and #Wilbur, signals and slots provide a notification system of fire and forget, as well as decoupling classes.
A great advantage of this is that a class can emit a signal, not knowing what or who is going to receive the message. It may be just one object that has a slot connected, or it could be dozens. Alternatively, you may want a single class with one slot that is connected to multiple signals. So it can be used as a notification system.
For example, imagine a program where many different types of objects send information to a log. The objects simply emit a Log(text) signal and do not care about what actually does the logging. These signals can be connected to a log class which can be either logging to a file, over a network, to the screen, or all at once. The objects logging don't care.

PyQt4 Threading: Sending data back to a thread

I'm writing a program, with a PyQt frontend. To ensure that the UI doesn't freeze up, I use QThreads to emit signals back to the parent. Now, I have reached a point where I need my thread to stop running, emit a signal back to the parent, then wait on the parent to return an approval for the thread to continue (after the user interacts with the UI a little bit).
I've been looking into the QMutex class, along with QThread's wait function.
How should I go about doing this properly?
One approach is using a condition variable.
In my code, however, I prefer using Python's built-in Queue objects to synchronize data between threads. While I'm at it, I use Python's threads as opposed to PyQt threads, mainly because it allows me to reuse the non-GUI part of the code without an actual GUI.

Thread error in Python & PyQt

I noticed that when the function setModel is executed in parallel thread (I tried threading.Timer or threading.thread), I get this:
QObject: Cannot create children for a parent that is in a different thread.
(Parent is QHeaderView(0x1c93ed0), parent's thread is QThread(0xb179c0), current thread is QThread(0x23dce38)
QObject::startTimer: timers cannot be started from another thread
QObject: Cannot create children for a parent that is in a different thread.
(Parent is QTreeView(0xc65060), parent's thread is QThread(0xb179c0), current thread is QThread(0x23dce38)
QObject::startTimer: timers cannot be started from another thread
Is there any way to solve this?
It is indeed a fact of life that multithreaded use of Qt (and other rich frameworks) is a delicate and difficult job, requiring explicit attention and care -- see Qt's docs for an excellent coverage of the subject (for readers experienced in threading in general, with suggested readings for those who yet aren't).
If you possibly can, I would suggest what I always suggest as the soundest architecture for threading in Python: let each subsystem be owned and used by a single dedicated thread; communicate among threads via instances of Queue.Queue, i.e., by message passing. This approach can be a bit restrictive, but it provides a good foundation on which specifically identified and carefully architected exceptions (based on thread pools, occasional new threads being spawned, locks, condition variables, and other such finicky things;-). In the latter category I would also classify Qt-specific things such as cross-thread signal/slot communication via queued connections.
Looks like you've stumped on a Qt limitation there. Try using signals or events if you need objects to communicate across threads.
Or ask the Qt folk about this. It doesn't seem specific to PyQt.

Categories