Why Signals and Slots in PyQt? - python

I'm learning PyQt (I haven't used C++ Qt before).
I don't understand the reason for signals and slots. That is, it seems I can do everything by calling the methods of classes directly. Doing so seems more Pythonic, uses less code and is easier to read. What am I missing?
For clarification, I'm asking why I would do this:
def mouseReleaseEvent(self):
self.clicksignal.connect(ui.iconClicked)
self.clicksignal.emit()
when I can do this:
def mouseReleaseEvent(self):
ui.iconClicked()

The reason signals and slots exist is because you cannot change the GUI from any other thread of the application except the UI thread.
If you have some heavy CPU intensive calculation to do, or any task that waits for IO or something like that... if you do it the UI thread (for example if you fetch a url or something that lasts some time), your UI thread will be busy, and the GUI event loop wont be able to update itself, so the GUI will seem frozen.
To do these kind of operations. you execute them in a separate (background worker) thread, so the UI thread can continue updating the GUI.
Now the problem is that you cannot access the elements of the GUI and change their state from any other thread except the UI thread. So signals and slots are introduced. When you emit a signal it is guaranteed to be caught in the UI thread, and the slot will be executed in the UI thread.
I'm not exactly sure what you try to accomplish in your example, but this is the main reason why signals and slots exist. Basically UI thread should only deal with the UI, and everything else should be done in the background worker thread that sends a signal that gets caught in the UI thread and the slot that update the GUI is executed in the UI thread.

Well... yes, you can. But you need to think bigger. In your example code, caller of mouseReleaseEvent must have the reference to the object that receives the notification, and explicitly invoke appropriate method. Using slot & signals mechanism decouples event producer (e.g. widget) from event consumer - pretty much arbitrary other object. This makes setting up communication and control flow easier and external to the low-level UI components, which is the good thing. It also makes such components reusable - by moving wiring code outside, we make it independent of the application logic.

In addition to the answers by #ViktorKerkez and #Wilbur, signals and slots provide a notification system of fire and forget, as well as decoupling classes.
A great advantage of this is that a class can emit a signal, not knowing what or who is going to receive the message. It may be just one object that has a slot connected, or it could be dozens. Alternatively, you may want a single class with one slot that is connected to multiple signals. So it can be used as a notification system.
For example, imagine a program where many different types of objects send information to a log. The objects simply emit a Log(text) signal and do not care about what actually does the logging. These signals can be connected to a log class which can be either logging to a file, over a network, to the screen, or all at once. The objects logging don't care.

Related

Compatibility Between PyPubSub and PyQt

I have been trying to find the most elegant way to decouple my programs from the GUI, such that I can change my front-end without needing to re-write a whole lot of code.
I work with threads a lot, so I often have the need to notify the main GUI thread of asynchronous happenings either through events (for wxPython) or signals (for PyQt). I have experimented a bit with PyPubSub, which may be what I am looking for, but while there are tons of wxPython examples (since it was originally included with it in early development).
I am not aware if there is a 'proper' way to use it with PyQt without running into race conditions. If anyone has some insight on this, I would really appreciate it!
PyPubSub's sendMessage() will call listeners in the same thread as the sender (default Python behavior). In a multithreaded GUI app, you must ensure that listeners that interact with GUI are called in the main thread. Also threads execute independently, so you need each thread to call its own listeners, based on a timed or idle callback mechanism.
The way to call listeners in the correct thread in PyQt is via signals. PyPubSub can still be used in a multithreaded PyQt GUI, but the mechanism used to transfer the "message" from sender to listener would have to be via a signal. There isn't one best way to do it I don't think, depends on details of your app design. You could for example have a QtPubsubHandler that derives from QObject and gets created in main thread, and a QtPubsubSender class that also derives from QObject and gets created in each worker thread. The QtPubSubSender defines a custom signal, say pubsub, which QtPubsubHandler connects to. Then to send a message, the sender does qtPubsubHandler.sendMessage(topic, **data), which causes a pubsub signal to get emitted, which Qt properly queues and eventually signals the QtPubsubHandler, which actually calls pub.sendMessage().
There are many other ways, but you get the general idea: two classes that derive from QObject, and one of them does the actual sending in the same thread as the intended listener, the other uses a signal so everything is thread safe. Actually you don't have to use PyQt signals: but then you would have to have a queue in main thread and have an idle callback that allows it to process any items on the queue.

PyQt : Emtting signal from QThread to QWidget

I've been meaning to implement a chat client/server, with PyQt handling the GUI front. The problem I'm facing is when I want to tell an already connected client that another new client has joined. Initially I worked it around by adding a "refresh users" button which sends the client the updated list. However, now when a client has to message another, I realise that I will obviously have to create a separate thread which keeps on checking for data from the server. I have trying since yesterday, reading various posts/answers, forums but still can't get this to work.
What I want is a separate thread which is executed at the start of the program that checks for data from the server and can emit signals that instigate the function in a GUI thread to change the users list. How do I make a thread that works constantly and emits signals that can be caught by the main GUI loop ? And how should I catch the signal ?
Same as with other Qt components: you create a QThread for your network management, the QThread derived class emits signals with some data coming from network; on the main thread side, you have QObjects and QWidgets that you connect to those signals. Take a look at the following (in that order):
Qt Threading Basics
Thread Support in Qt
How to use QThreads
Another How to use QThreads
what is the correct way to implement a QThread... (example please...)
Once you have read these and tried your own code, then you can post a new question with more specific issues you are having. Otherwise, your question is too broad.

PyQt4 Threading: Sending data back to a thread

I'm writing a program, with a PyQt frontend. To ensure that the UI doesn't freeze up, I use QThreads to emit signals back to the parent. Now, I have reached a point where I need my thread to stop running, emit a signal back to the parent, then wait on the parent to return an approval for the thread to continue (after the user interacts with the UI a little bit).
I've been looking into the QMutex class, along with QThread's wait function.
How should I go about doing this properly?
One approach is using a condition variable.
In my code, however, I prefer using Python's built-in Queue objects to synchronize data between threads. While I'm at it, I use Python's threads as opposed to PyQt threads, mainly because it allows me to reuse the non-GUI part of the code without an actual GUI.

How to broadcast a signal in Qt4

I'm wanting a paradigm in a Qt4 (PyQt4) program where a component is able to respond to a signal without knowing anything about where it is coming from.
My intial reading suggests that I have to explicitly connect signals to slots. But what I want is for any of a number of components to be able to send a signal, and for it to be processed by another component.
Comparing with another toolkits, for example, in wxWidgets I would use events. These automatically propogate up from child windows/objects to parents. At each level they can be handled. This means if I have a lot of children which may emit the same event, I don't have to explicitly connect all of them to the handler. I can just put the handler in the parent, or some higher level in the window hierarchy. This means that only the event generator and consumer need to know about the event at all. The consumer doesn't need to know where the source of the event is, how many such sources there are, or anything else about it.
Is this possible in Qt - is there another approach? Maybe there is an alternative event mechanism to signals and slots?
This isn't easily possible - you have to have something that knows about the signaling object and the receiving object to connect the two. Depending on what you need, however, you might be able to set up a class that mediates between the two (so objects with signals tell the class they exist, and have such-and-such a signal, while objects with slots tell the class they exist and have such-and-such a slot to connect to a given signal, and the mediator class tracks both of those, making connections when necessary).
Don't you just want a good old fashioned method invocation? The response is just the return value of the method.
Signal handlers do NOT know the emitter (only the signal type) and emitters do NOT know what handlers are connected. Many handlers can connect to the same signal and they are executed in the order of connection. A signal can be emitted from many places.

wxpython -- threads and window events

I have a wxPython application (http://www.OpenSTV.org) that counts ballots using methods that have multiple rounds. I'd like to do two things:
(1) For a large number of ballots, this can be a bit slow, so I'd like to show the user a progress dialog so he doesn't think the application is frozen.
(2) I'd like to allow the user to break ties manually, and this requires the counting code to show a dialog window.
To achieve (1), I create a thread to run the counting code, and this allows me to present a nice progress dialog to the user.
The problem with this, however, is that the counting code is not the main thread, and only the main thread in wxPython can process window events.
I suppose I could create a thread to run the progress dialog instead, but this seems awkward. Is there a better way of accomplishing both (1) and (2)?
Use Queue to communicate and synchronize among threads, with each thread "owning" and exclusively interacting with a resource that's not handy to share.
In GUI toolkits where only the main thread can really handle the GUI, the main thread should play along -- set up and start the threads doing the actual work, then do nothing but GUI work, using Queues to communicate to and from the other threads.
For (1), when your counting thread has an update, it should put it to the Queue where the main thread is waiting; when your main thread gets a suitable message on that Queue, it updates the progress dialog.
For (2), the counting thread sends the "have the user break a tie" request, main thread gets it and responds appropriately, and sends back the resolution on a separate Queue.
So in general, there are two kinds of communications: one that don't require a response, and others that do. For the former kind, just put the notification on the appropriate queue and simply proceed -- it will be acted on in due course. For the latter kind, my favorite idiom is to put on the appropriate queue a pair (request, response_queue). If otherwise identical requests differ in that some need a response and others don't, queueing (request, None) when no response is needed (and (request, q) where q's a Queue when a response IS needed) is a nice, easy, and general idiom, too.
There are several ways to call the main thread wxPython thread from a process thread. The simplest is wx.CallAfter() which will always execute the functional passed to it in the main thread. You can also use wx.PostEvent() and there's an example of this in the demo (labeled: Threads), and there are several more complicated but more customizable ways which are discussed in the last chapter of wxPython in Action.

Categories