I'm writing a CLI to interact with elasticsearch using the elasticsearch-py library. I'm trying to mock elasticsearch-py functions in order to test my functions without calling my real cluster.
I read this question and this one but I still don't understand.
main.py
Escli inherits from cliff's App class
class Escli(App):
_es = elasticsearch5.Elasticsearch()
settings.py
from escli.main import Escli
class Settings:
def get(self, sections):
raise NotImplementedError()
class ClusterSettings(Settings):
def get(self, setting, persistency='transient'):
settings = Escli._es.cluster\
.get_settings(include_defaults=True, flat_settings=True)\
.get(persistency)\
.get(setting)
return settings
settings_test.py
import escli.settings
class TestClusterSettings(TestCase):
def setUp(self):
self.patcher = patch('elasticsearch5.Elasticsearch')
self.MockClass = self.patcher.start()
def test_get(self):
# Note this is an empty dict to show my point
# it will contain childs dict to allow my .get(persistency).get(setting)
self.MockClass.return_value.cluster.get_settings.return_value = {}
cluster_settings = escli.settings.ClusterSettings()
ret = cluster_settings.get('cluster.routing.allocation.node_concurrent_recoveries', persistency='transient')
# ret should contain a subset of my dict defined above
I want to have Escli._es.cluster.get_settings() to return what I want (a dict object) in order to not make the real HTTP call, but it keeps doing it.
What I know:
In order to mock an instance method I have to do something like
MagicMockObject.return_value.InstanceMethodName.return_value = ...
I cannot patch Escli._es.cluster.get_settings because Python tries to import Escli as module, which cannot work. So I'm patching the whole lib.
I desperately tried to put some return_value everywhere but I cannot understand why I can't mock that thing properly.
You should be mocking with respect to where you are testing. Based on the example provided, this means that the Escli class you are using in the settings.py module needs to be mocked with respect to settings.py. So, more practically, your patch call would look like this inside setUp instead:
self.patcher = patch('escli.settings.Escli')
With this, you are now mocking what you want in the right place based on how your tests are running.
Furthermore, to add more robustness to your testing, you might want to consider speccing for the Elasticsearch instance you are creating in order to validate that you are in fact calling valid methods that correlate to Elasticsearch. With that in mind, you can do something like this, instead:
self.patcher = patch('escli.settings.Escli', Mock(Elasticsearch))
To read a bit more about what exactly is meant by spec, check the patch section in the documentation.
As a final note, if you are interested in exploring the great world of pytest, there is a pytest-elasticsearch plugin created to assist with this.
Related
I am relatively new to pytest, so I understand the simple use of fixtures that looks like that:
#pytest.fixture
def example_data():
return "abc"
and then using it in a way like this:
def test_data(self, example_data):
assert example_data == "abc"
I am working on a django app and where it gets confusing is when I try to use fixtures to create django objects that will be used for the tests.
The closest solution that I've found online looks like that:
#pytest.fixture
def test_data(self):
users = get_user_model()
client = users.objects.get_or_create(username="test_user", password="password")
and then I am expecting to be able to access this user object in a test function:
#pytest.mark.django_db
#pytest.mark.usefixtures("test_data")
async def test_get_users(self):
# the user object should be included in this queryset
all_users = await sync_to_async(User.objects.all)()
.... (doing assertions) ...
The issue is that when I try to list all the users I can't find the one that was created as part of the test_data fixture and therefore can't use it for testing.
I noticed that if I create the objects inside the function then there is no problem, but this approach won't work for me because I need to parametrize the function and depending on the input add different groups to each user.
I also tried some type of init or setup function for my testing class and creating the User test objects from there but this doesn't seem to be pytest's recommended way of doing things. But either way that approach didn't work either when it comes to listing them later.
Is there any way to create test objects which will be accessible when doing a queryset?
Is the right way to manually create separate functions and objects for each test case or is there a pytest-way of achieving that?
I need to mock elasticsearch calls, but I am not sure how to mock them in my python unit tests. I saw this framework called ElasticMock. I tried using it the way indicated in the documentation and it gave me plenty of errors.
It is here :
https://github.com/vrcmarcos/elasticmock
My question is, is there any other way to mock elastic search calls?
This doesn't seem to have an answer either: Mock elastic search data.
And this just indicates to actually do integration tests rather than unit tests, which is not what I want:
Unit testing elastic search inside Django app.
Can anyone point me in the right direction? I have never mocked things with ElasticSearch.
You have to mock the attr or method you need, for example:
import mock
with mock.patch("elasticsearch.Elasticsearch.search") as mocked_search, \
mock.patch("elasticsearch.client.IndicesClient.create") as mocked_index_create:
mocked_search.return_value = "pipopapu"
mocked_index_create.return_value = {"acknowledged": True}
In order to know the path you need to mock, just explore the lib with your IDE. When you already know one you can easily find the others.
After looking at the decorator source code, the trick for me was to reference Elasticsearch with the module:
import elasticsearch
...
elasticsearch.Elasticsearch(...
instead of
from elasticsearch import Elasticsearch
...
Elasticsearch(...
I'm going to give a very abstract answer because this applies to more than ES.
class ProductionCodeIWantToTest:
def __init__(self):
pass
def do_something(data):
es = ES() #or some database or whatever
es.post(data) #or the right syntax
Now I can't test this.
With one small change, injecting a dependency:
class ProductionCodeIWantToTest:
def __init__(self, database):
self.database = database
def do_something(data):
database.save(data) #or the right syntax
Now you can use the real db:
es = ES() #or some database or whatever
thing = ProductionCodeIWantToTest(es)
or test it
mock = #... up to you - just needs a save method so far
thing = ProductionCodeIWantToTest(mock)
I am using cherrypy as a web server, and I want to check a user's logged-in status before returning the page. This works on methods in the main Application class (in site.py) but gives an error when I call the same decorated function on method in a class that is one layer deeper in the webpage tree (in a separate file).
validate_user() is the function used as a decorator. It either passes a user to the page or sends them to a 401 restricted page, as a cherrypy.Tool, like this:
from user import validate_user
cherrypy.tools.validate_user = cherrypy.Tool('before_handler', validate_user)
I attach different sections of the site to the main site.py file's Application class by assigning instances of the sub-classes as variables accordingly:
from user import UserAuthentication
class Root:
user = UserAuthentication() # maps user/login, user/register, user/logout, etc
admin = Admin()
api = Api()
#cherrypy.expose
#cherrypy.tools.validate_user()
def how_to(self, **kw):
from other_stuff import how_to_page
return how_to_page(kw)
This, however, does not work when I try to use the validate_user() inside the Admin or Api or Analysis sections. These are in separate files.
import cherrypy
class Analyze:
#cherrypy.expose
#cherrypy.tools.validate_user() #### THIS LINE GIVES ERROR ####
def explore(self, *args, **kw): # #addkw(fetch=['uid'])
import explore
kw['uid'] = cherrypy.session.get('uid',-1)
return explore.explorer(args, kw)
The error is that cherrypy.tools doesn't have a validate_user function or method. But other things I assign in site.py do appear in cherrypy here. What's the reason why I can't use this tool in a separate file that is part of my overall site map?
If this is relevant, the validate_user() function simply looks at the cherrypy.request.cookie, finds the 'session_token' value, and compares it to our database and passes it along if the ID matches.
Sorry I don't know if the Analyze() and Api() and User() pages are subclasses, or nested classes, or extended methods, or what. So I can't give this a precise title. Do I need to pass in the parent class to them somehow?
The issue here is that Python processes everything except the function/method bodies during import. So in site.py, when you import user (or from user import <anything>), that causes all of the user module to be processed before the Python interpreter has gotten to the definition of the validate_user tool, including the decorator, which is attempting to access that tool by value (rather than by a reference).
CherryPy has another mechanism for decorating functions with config that will enable tools on those handlers. Instead of #cherrypy.tools.validate_user, use:
#cherrypy.config(**{"tools.validate_user.on": True})
This decorator works because instead of needing to access validate_user from cherrypy.tools to install itself on the handler, it instead configures CherryPy to install that tool on the handler later, when the handler is invoked.
If that tool is needed for all methods on that class, you can use that config decorator on the class itself.
You could alternatively, enable that tool for given endpoints in the server config, as mentioned in the other question.
I am a beginner to using pytest in python and trying to write test cases for the following method which get the user address when correct Id is passed else rises custom error BadId.
def get_user_info(id: str, host='127.0.0.1', port=3000 ) -> str:
uri = 'http://{}:{}/users/{}'.format(host,port,id)
result = Requests.get(uri).json()
address = result.get('user',{}).get('address',None)
if address:
return address
else:
raise BadId
Can someone help me with this and also can you suggest me what are the best resources for learning pytest? TIA
Your test regimen might look something like this.
First I suggest creating a fixture to be used in your various method tests. The fixture sets up an instance of your class to be used in your tests rather than creating the instance in the test itself. Keeping tasks separated in this way helps to make your tests both more robust and easier to read.
from my_package import MyClass
import pytest
#pytest.fixture
def a_test_object():
return MyClass()
You can pass the test object to your series of method tests:
def test_something(a_test_object):
# do the test
However if your test object requires some resources during setup (such as a connection, a database, a file, etc etc), you can mock it instead to avoid setting up the resources for the test. See this talk for some helpful info on how to do that.
By the way: if you need to test several different states of the user defined object being created in your fixture, you'll need to parametrize your fixture. This is a bit of a complicated topic, but the documentation explains fixture parametrization very clearly.
The other thing you need to do is make sure any .get calls to Requests are intercepted. This is important because it allows your tests to be run without an internet connection, and ensures they do not fail as a result of a bad connection, which is not the thing you are trying to test.
You can intercept Requests.get by using the monkeypatch feature of pytest. All that is required is to include monkeypatch as an input parameter to the test regimen functions.
You can employ another fixture to accomplish this. It might look like this:
import Requests
import pytest
#pytest.fixture
def patched_requests(monkeypatch):
# store a reference to the old get method
old_get = Requests.get
def mocked_get(uri, *args, **kwargs):
'''A method replacing Requests.get
Returns either a mocked response object (with json method)
or the default response object if the uri doesn't match
one of those that have been supplied.
'''
_, id = uri.split('/users/', 1)
try:
# attempt to get the correct mocked json method
json = dict(
with_address1 = lambda: {'user': {'address': 123}},
with_address2 = lambda: {'user': {'address': 456}},
no_address = lambda: {'user': {}},
no_user = lambda: {},
)[id]
except KeyError:
# fall back to default behavior
obj = old_get(uri, *args, **kwargs)
else:
# create a mocked requests object
mock = type('MockedReq', (), {})()
# assign mocked json to requests.json
mock.json = json
# assign obj to mock
obj = mock
return obj
# finally, patch Requests.get with patched version
monkeypatch.setattr(Requests, 'get', mocked_get)
This looks complicated until you understand what is happening: we have simply made some mocked json objects (represented by dictionaries) with pre-determined user ids and addresses. The patched version of Requests.get simply returns an object- of type MockedReq- with the corresponding mocked .json() method when its id is requested.
Note that Requests will only be patched in tests that actually use the above fixture, e.g.:
def test_something(patched_requests):
# use patched Requests.get
Any test that does not use patched_requests as an input parameter will not use the patched version.
Also note that you could monkeypatch Requests within the test itself, but I suggest doing it separately. If you are using other parts of the requests API, you may need to monkeypatch those as well. Keeping all of this stuff separate is often going to be easier to understand than including it within your test.
Write your various method tests next. You'll need a different test for each aspect of your method. In other words, you will usually write a different test for the instance in which your method succeeds, and another one for testing when it fails.
First we test method success with a couple test cases.
#pytest.mark.parametrize('id, result', [
('with_address1', 123),
('with_address2', 456),
])
def test_get_user_info_success(patched_requests, a_test_object, id, result):
address = a_test_object.get_user_info(id)
assert address == result
Next we can test for raising the BadId exception using the with pytest.raises feature. Note that since an exception is raised, there is not a result input parameter for the test function.
#pytest.mark.parametrize('id', [
'no_address',
'no_user',
])
def test_get_user_info_failure(patched_requests, a_test_object, id):
from my_package import BadId
with pytest.raises(BadId):
address = a_test_object.get_user_info(id)
As posted in my comment, here also are some additional resources to help you learn more about pytest:
link
link
Also be sure to check out Brian Okken's book and Bruno Oliveira's book. They are both very helpful for learning pytest.
I have an endpoint that looks like:
api.add_resource(UserForm,'/app/user/form/<int:form_id>', endpoint='user_form')
My UserForm looks like:
class UserForm(Resource):
def get(self, form_id):
# GET stuff here
return user_form_dictionary
If I had a function called get_user_form(form_id) and I wanted to retrieve the return value from UserForm's get method based on the form_id parameter passed in. Is there a way in Flask that allows for some way to call UserForm's get method within the program?
def get_user_form(form_id):
user_form_dictionary = # some way to call UserForm class
# user_form_dictionary will store return dictionary from
# user_form_dictionary, something like: {'a': 'blah', 'b': 'blah'}
I'm not sure if there is a way to directly access the get method of the UserForm class from within your app, the only thing that springs to mind is to call the url for that resource but I don't recommend doing that.
Are you using the flask-restful extension by some chance? if so the below is based on the suggested intermediate project structure from there site here
In a common module (this contains functions that will be used throughout your application)
common\util.py
def get_user_form(form_id):
# logic to return the form data
Then in your .py that contains the UserForm class, import the util.py file from the common module then do the below
class UserForm(Resource):
def get(self, form_id):
user_form_dictionary = get_user_form(form_id)
# any additional logic. i try and keep it to a minimum as the function called
# would contain it. also this way maintanence is easier
return user_form_dictionary
Then somewhere else in your app after importing the common module you can reuse the same function(s).
def another_function(form_id):
user_form_dictionary = get_user_form(form_id)
# any additional logic.
# same rules as before
return user_form_dictionary
Fetch and display the data using Javascript's Fetch API.