Imagine we have an array called count, size N, initialized to zero:
import numpy as np
N = 100
count = np.zeros(N) # Shape (N,)
And a set of indexes, which may contain duplicates, and a set of boolean values (or whatever kind of values really):
IDX = np.random.choice(N,N,replace=True) # Shape (N,)
mask = np.random.rand(N)>.5 # Shape (N,)
I want to count, by location, the number of True's.
count[IDX] += mask
But for this output, the maximum of count will be equal to 1.
This is because, I assume, duplicates can't be processed in the pipeline like this, either the first or last is used I suspect.
Is there any vectorized equivalent code which can perform this function accurately?
Thanks!
Related
I'm basically trying to take the weighted mean of a 3D dataset, but only on a filtered subset of the data, where the filter is based off of another (2D) array. The shape of the 2D data matches the first 2 dimensions of the 3D data, and is thus repeated for each slice in the 3rd dimension.
Something like:
import numpy as np
myarr = np.array([[[4,6,8],[9,3,2]],[[2,7,4],[3,8,6]],[[1,6,7],[7,8,3]]])
myarr2 = np.array([[7,3],[6,7],[2,6]])
weights = np.random.rand(3,2,3)
filtered = []
for k in range(len(myarr[0,0,:])):
temp1 = myarr[:,:,k]
temp2 = weights[:,:,k]
filtered.append(temp1[np.where(myarr2 > 5)]*temp2[np.where(myarr2 > 5)])
average = np.array(np.sum(filtered,1)/len(filtered[0]))
I am concerned about efficiency here. Is it possible to vectorize this so I don't need the loop, or are there other suggestions to make this more efficient?
The most glaring efficiency issue, even the loop aside, is that np.where(...) is being called multiple times inside the loop, on the same condition! You can just do this a single time beforehand. Moreover, there is no need for a loop. Your operation basically equates to:
mask = myarr2 > 5
average = (myarr[mask] * weights[mask]).mean(axis=0)
There is no need for an np.where either.
myarr2 is an array of shape (i, j) with same first two dims as myarr and weight, which have some shape (i, j, k).
So if there are n True elements in the boolean mask myarr2 > 5, you can apply it on your other arrays to obtain (n, k) elements (taking all elements along third axis, when there is a True at a certain [i, j] position).
I have two arrays: the 1st is a nested array of floats (which we will call the value array) and the 2nd is a 1d array of floats (which we will call the key array). The goal is to map each element within the value array to the numerically closest value on the key array.
To give some background, I am trying to map the weights of a CNN to discrete weights as part of a simulation project. The shape of the weights is dependent on the layer and network definition. In this particular case, I am working with a tf.keras.applications.ResNet50V2 network with CIFAR-10 as the dataset, which has weights that go from 3D to 1D. The weights are returned as nested lists with each index indicating the layer. The number of elements within the value array is very large when completely flattened
I currently have a working solution which I have included below, but I am wondering if anyone could think of any further optimizations. I keep getting warnings about the callback class taking longer than the actual training. This is a function that should be executed at the end of each training batch, so a little optimization can go a long way.
for ii in range(valueArray.size):
# Flatten array to 1D
flatArr = valueArray[ii].flatten()
# Using searchsorted since our discrete values have been sorted
idx = np.searchsorted(keyArray, flatArr, side="left")
# Clip any values that exceed array indices
np.clip(idx, 0, keyArray.size - 1, out=idx)
flatMinVal = keyArray[idx]
# Get bool array of idx that have values to the left (idx > 0)
hasValLeft = idx > 0
# Ensures that closer on left is an bool array of equal size as the original
closerOnLeft = hasValLeft
# Check if abs value for right is greater than left (Acts on values with idx > 0)
closerOnLeftSub = np.abs(flatArr[hasValLeft] - keyArray[idx[hasValLeft]]) > \
np.abs(flatArr[hasValLeft] - keyArray[idx[hasValLeft]-1])
# Only assign values that have a value on the left, else always false
closerOnLeft[hasValLeft] = closerOnLeftSub
# If left element is closer, use that as state
flatMinVal[closerOnLeft] = keyArray[idx[closerOnLeft]-1]
# Return reshaped values
valueArray[ii] = np.reshape(flatMinVal, valueArray[ii].shape)
I have a 3 dimensional array of hape (365, x, y) where 36 corresponds to =daily data. In some cases, all the elements along the time axis axis=0 are np.nan.
The time series for each point along the axis=0 looks something like this:
I need to find the index at which the maximum value (peak data) occurs and then the two minimum values on each side of the peak.
import numpy as np
a = np.random.random(365, 3, 3) * 10
a[:, 0, 0] = np.nan
peak_mask = np.ma.masked_array(a, np.isnan(a))
peak_indexes = np.nanargmax(peak_mask, axis=0)
I can find the minimum before the peak using something like this:
early_minimum_indexes = np.full_like(peak_indexes, fill_value=0)
for i in range(peak_indexes.shape[0]):
for j in range(peak_indexes.shape[1]):
if peak_indexes[i, j] == 0:
early_minimum_indexes[i, j] = 0
else:
early_mask = np.ma.masked_array(a, np.isnan(a))
early_loc = np.nanargmin(early_mask[:peak_indexes[i, j], i, j], axis=0)
early_minimum_indexes[i, j] = early_loc
With the resulting peak and trough plotted like this:
This approach is very unreasonable time-wise for large arrays (1m+ elements). Is there a better way to do this using numpy?
While using masked arrays may not be the most efficient solution in this case, it will allow you to perform masked operations on specific axes while more-or-less preserving shape, which is a great convenience. Keep in mind that in many cases, the masked functions will still end up copying the masked data.
You have mostly the right idea in your current code, but you missed a couple of tricks, like being able to negate and combine masks. Also the fact that allocating masks as boolean up front is more efficient, and little nitpicks like np.full(..., 0) -> np.zeros(..., dtype=bool).
Let's work through this backwards. Let's say you had a well-behaved 1-D array with a peak, say a1. You can use masking to easily find the maxima and minima (or indices) like this:
peak_index = np.nanargmax(a1)
mask = np.zeros(a1.size, dtype=np.bool)
mask[peak:] = True
trough_plus = np.nanargmin(np.ma.array(a1, mask=~mask))
trough_minus = np.nanargmin(np.ma.array(a1, mask=mask))
This respects the fact that masked arrays flip the sense of the mask relative to normal numpy boolean indexing. It's also OK that the maximum value appears in the calculation of trough_plus, since it's guaranteed not to be a minimum (unless you have the all-nan situation).
Now if a1 was a masked array already (but still 1D), you could do the same thing, but combine the masks temporarily. For example:
a1 = np.ma.array(a1, mask=np.isnan(a1))
peak_index = a1.argmax()
mask = np.zeros(a1.size, dtype=np.bool)
mask[peak:] = True
trough_plus = np.ma.masked_array(a1, mask=a.mask | ~mask).argmin()
trough_minus (np.ma.masked_array(a1, mask=a.mask | mask).argmin()
Again, since masked arrays have reversed masks, it's important to combine the masks using | instead of &, as you would for normal numpy boolean masks. In this case, there is no need for calling the nan version of argmax and argmin, since all the nans are already masked out.
Hopefully, the generalization to multiple dimensions becomes clear from here, given the prevalence of the axis keyword in numpy functions:
a = np.ma.array(a, mask=np.isnan(a))
peak_indices = a.argmax(axis=0).reshape(1, *a.shape[1:])
mask = np.arange(a.shape[0]).reshape(-1, *(1,) * (a.ndim - 1)) >= peak_indices
trough_plus = np.ma.masked_array(a, mask=~mask | a.mask).argmin(axis=0)
trough_minus = np.ma.masked_array(a, mask=mask | a.mask).argmin(axis=0)
N-dimensional masking technique comes from Fill mask efficiently based on start indices, which was asked just for this purpose.
Here is a method that
copies the data
saves all nan positions and replaces all nans with global min-1
finds the rowwise argmax
subtracts its value from the entire row
note that each row now has only non-positive values with the max value now being zero
zeros all nan positions
flips the sign of all values right of the max
this is the main idea; it creates a new row-global max at the position where before there was the right hand min; at the same time it ensures that the left hand min is now row-global
retrieves the rowwise argmin and argmax, these are the postitions of the left and right mins in the original array
finds all-nan rows and overwrites the max and min indices at these positions with INVALINT
Code:
INVALINT = -9999
t,x,y = a.shape
t,x,y = np.ogrid[:t,:x,:y]
inval = np.isnan(a)
b = np.where(inval,np.nanmin(a)-1,a)
pk = b.argmax(axis=0)
pkval = b[pk,x,y]
b -= pkval
b[inval] = 0
b[t>pk[None]] *= -1
ltr = b.argmin(axis=0)
rtr = b.argmax(axis=0)
del b
inval = inval.all(axis=0)
pk[inval] = INVALINT
ltr[inval] = INVALINT
rtr[inval] = INVALINT
# result is now in ltr ("left trough"), pk ("peak") and rtr
I have a MxN array of values taken from an experiment. Some of these values are invalid and are set to 0 to indicate such. I can construct a mask of valid/invalid values using
mask = (mat1 == 0) & (mat2 == 0)
which produces an MxN array of bool. It should be noted that the masked locations do not neatly follow columns or rows of the matrix - so simply cropping the matrix is not an option.
Now, I want to take the mean along one axis of my array (E.G end up with a 1xN array) while excluding those invalid values in the mean calculation. Intuitively I thought
np.mean(mat1[mask],axis=1)
should do it, but the mat1[mask] operation produces a 1D array which appears to just be the elements where mask is true - which doesn't help when I only want a mean across one dimension of the array.
Is there a 'python-esque' or numpy way to do this? I suppose I could use the mask to set masked elements to NaN and use np.nanmean - but that still feels kind of clunky. Is there a way to do this 'cleanly'?
I think the best way to do this would be something along the lines of:
masked = np.ma.masked_where(mat1 == 0 && mat2 == 0, array_to_mask)
Then take the mean with
masked.mean(axis=1)
One similarly clunky but efficient way is to multiply your array with the mask, setting the masked values to zero. Then of course you'll have to divide by the number of non-masked values manually. Hence clunkiness. But this will work with integer-valued arrays, something that can't be said about the nan case. It also seems to be fastest for both small and larger arrays (including the masked array solution in another answer):
import numpy as np
def nanny(mat, mask):
mat = mat.astype(float).copy() # don't mutate the original
mat[~mask] = np.nan # mask values
return np.nanmean(mat, axis=0) # compute mean
def manual(mat, mask):
# zero masked values, divide by number of nonzeros
return (mat*mask).sum(axis=0)/mask.sum(axis=0)
# set up dummy data for testing
N,M = 400,400
mat1 = np.random.randint(0,N,(N,M))
mask = np.random.randint(0,2,(N,M)).astype(bool)
print(np.array_equal(nanny(mat1, mask), manual(mat1, mask))) # True
I have a np.ndarray with numbers that indicate spots of interest, I am interested in the spots which have values 1 and 9.
Right now they are being extracted as such:
maskindex.append(np.where(extract.variables['mask'][0] == 1) or np.where(megadatalist[0].variables['mask'][0] == 9))
xval = maskindex[0][1]
yval = maskindex[0][0]
I need to apply these x and y values to the arrays that I am operating on, to speed things up.
I have 140 arrays that are each 734 x 1468, I need the mean, max, min, std calculated for each field. And I was hoping there was an easy way for applying the masked array to speed up the operations, right now I am simply doing it on the entire arrays as such:
Average_List = np.mean([megadatalist[i].variables['analysed_sst'][0] for i in range(0,Numbers_of_datasets)], axis=0)
Average_Error_List = np.mean([megadatalist[i].variables['analysis_error'][0] for i in range(0,Numbers_of_datasets)], axis=0)
Std_List = np.std([megadatalist[i].variables['analysed_sst'][0] for i in range(0,Numbers_of_datasets)], axis=0)
Maximum_List = np.maximum.reduce([megadatalist[i].variables['analysed_sst'][0] for i in range(0,Numbers_of_datasets)])
Minimum_List = np.minimum.reduce([megadatalist[i].variables['analysed_sst'][0] for i in range(0,Numbers_of_datasets)])
Any ideas on how to speed things up would be highly appreciated
I may have solved it partially, depending on what you're aiming for. The following code reduces an array arr to a 1d array with only the relevant indicies. You can then do the needed calculations without considering the unwanted locations
arr = np.array([[0,9,9,0,0,9,9,1],[9,0,1,9,0,0,0,1]])
target = [1,9] # wanted values
index = np.where(np.in1d(arr.ravel(), target).reshape(arr.shape))
no_zeros = arr[index]
At this stage "all you need" is to reinsert the values "no_zeros" on an array of zeroes with appropriate shape, on the indices given in "index". One way is to flatten the index array and recalculate the indices, so that they match a flattened arr array. Then use numpy.insert(np.zeroes(arr.shape),new_index,no_zeroes) and then reshaping to the appropriate shape afterwards. Reshaping is constant time in numpy. Admittedly, I have not figured out a fast numpy way to create the new_index array.
Hope it helps.