Classes: Function Use within the same Class - python

I'm sure this is well understood, but even the examples I see I have trouble understanding how to use functions defined within a particular class.
The simple example I've made is as follows (make a function add_one that adds 1 to a given input number and then use that function in another function add_two):
class TestPassingFunctions:
def __init__(self, number):
self.number = number
def add_one(self, number):
return number + 1
def add_two(self, number):
new_value = self.add_one(number) + 1
return new_value
TestPassingFunctions.add_two(2)
This returns:
TypeError: add_two() missing 1 required positional argument: 'number'
From what I've read, it looks the class is interpreting the 2 as the self parameter. As is probably obvious, I don't entirely understand when/how I should be using the initialization with __init__. Up until this point, I thought it should be used to propagate variable values through the class to be used by the different functions, but there's clearly some flaw in my use.
Thanks for any help!

You need to initialize an object of type TestPassingFunctions. Do this like so:
test = TestPassingFunctions(1)
test.add_two(2)

You need to generate an instance of the class first:
a = TestPassingFunctions(1)
print(a.add_two(2))

If you don't want to always create an instance, you can make the function a classmethod or a staticmethod (useful if you want classes for inheritance but not specifically to hold state (local variables associated with each instance))
class TestPassingFunctions:
#staticmethod #doesn't need anything else from the class
def add_one(number):
return number + 1
#classmethod #may need to refer to the class (in this case to access cls.add_one)
def add_two(cls, number):
new_value = cls.add_one(number) + 1
return new_value
TestPassingFunctions.add_two(2) #returns 4
Here's a quick guide on the different types of methods you can use

You are mixing the contents of class methods, static methods and regular methods of a class.
These methods are defined to be used as regular methods, with an instance of your class:
test = TestPassingFunctions(1)
test.add_two
If you want to call them without an instance, like TestPassingFunctions.add_two(2), you should define them as static or class methods, with a decorator #staticmethod and without self as first parameter

Related

In Python, is there a way to return a specific attribute value by accessing the class object directly, without specifying object.attribute?

Suppose I have a class:
class Test:
def __init__(self):
self.value = 1;
test = Test();
Is is possible to specify a way to access valueby default when accessing the object itself? For instance:
a = 1 + test # by default this would be equivalent to a = 1 + test.value
The reasoning for this question is that I have some standard objects with builtin validation and from which I will almost always only get the value attribute. The intention is just to reduce the clutter.
A user suggested overriding the specific necessary operation but before I could comment the answer was delited. That could work perhaps but I wonder if it is possible at a general level.
I don't think it's the appropriate way, because by default, a Python class will return None if it's initialized. But if you still want to do it. You can use the __new__ instead of __init__.
class Test:
def __new__(cls):
cls.value = 1
return cls.value
test = Test()
print(test)
Output:
1

Is this sound software engineering practice for class construction?

Is this a plausible and sound way to write a class where there is a syntactic sugar #staticmethod that is used for the outside to interact with? Thanks.
###scrip1.py###
import SampleClass.method1 as method1
output = method1(input_var)
###script2.py###
class SampleClass(object):
def __init__(self):
self.var1 = 'var1'
self.var2 = 'var2'
#staticmethod
def method1(input_var):
# Syntactic Sugar method that outside uses
sample_class = SampleClass()
result = sample_class._method2(input_var)
return result
def _method2(self, input_var):
# Main method executes the various steps.
self.var4 = self._method3(input_var)
return self._method4(self.var4)
def _method3(self):
pass
def _method4(self):
pass
Answering to both your question and your comment, yes it is possible to write such a code but I see no point in doing it:
class A:
def __new__(cls, value):
return cls.meth1(value)
def meth1(value):
return value + 1
result = A(100)
print(result)
# output:
101
You can't store a reference to a class A instance because you get your method result instead of an A instance. And because of this, an existing __init__will not be called.
So if the instance just calculates something and gets discarded right away, what you want is to write a simple function, not a class. You are not storing state anywhere.
And if you look at it:
result = some_func(value)
looks exactly to what people expect when reading it, a function call.
So no, it is not a good practice unless you come up with a good use case for it (I can't remember one right now)
Also relevant for this question is the documentation here to understand __new__ and __init__ behaviour.
Regarding your other comment below my answer:
defining __init__ in a class to set the initial state (attribute values) of the (already) created instance happens all the time. But __new__ has the different goal of customizing the object creation. The instance object does not exist yet when __new__is run (it is a constructor function). __new__ is rarely needed in Python unless you need things like a singleton, say a class A that always returns the very same object instance (of A) when called with A(). Normal user-defined classes usually return a new object on instantiation. You can check this with the id() builtin function. Another use case is when you create your own version (by subclassing) of an immutable type. Because it's immutable the value was already set and there is no way of changing the value inside __init__ or later. Hence the need to act before that, adding code inside __new__. Using __new__ without returning an object of the same class type (this is the uncommon case) has the addtional problem of not running __init__.
If you are just grouping lots of methods inside a class but there is still no state to store/manage in each instance (you notice this also by the absence of self use in the methods body), consider not using a class at all and organize these methods now turned into selfless functions in a module or package for import. Because it looks you are grouping just to organize related code.
If you stick to classes because there is state involved, consider breaking the class into smaller classes with no more than five to 7 methods. Think also of giving them some more structure by grouping some of the small classes in various modules/submodules and using subclasses, because a long plain list of small classes (or functions anyway) can be mentally difficult to follow.
This has nothing to do with __new__ usage.
In summary, use the syntax of a call for a function call that returns a result (or None) or for an object instantiation by calling the class name. In this case the usual is to return an object of the intended type (the class called). Returning the result of a method usually involves returning a different type and that can look unexpected to the class user. There is a close use case to this where some coders return self from their methods to allow for train-like syntax:
my_font = SomeFont().italic().bold()
Finally if you don't like result = A().method(value), consider an alias:
func = A().method
...
result = func(value)
Note how you are left with no reference to the A() instance in your code.
If you need the reference split further the assignment:
a = A()
func = a.method
...
result = func(value)
If the reference to A() is not needed then you probably don't need the instance too, and the class is just grouping the methods. You can just write
func = A.method
result = func(value)
where selfless methods should be decorated with #staticmethod because there is no instance involved. Note also how static methods could be turned into simple functions outside classes.
Edit:
I have setup an example similar to what you are trying to acomplish. It is also difficult to judge if having methods injecting results into the next method is the best choice for a multistep procedure. Because they share some state, they are coupled to each other and so can also inject errors to each other more easily. I assume you want to share some data between them that way (and that's why you are setting them up in a class):
So this an example class where a public method builds the result by calling a chain of internal methods. All methods depend on object state, self.offset in this case, despite getting an input value for calculations.
Because of this it makes sense that every method uses self to access the state. It also makes sense that you are able to instantiate different objects holding different configurations, so I see no use here for #staticmethod or #classmethod.
Initial instance configuration is done in __init__ as usual.
# file: multistepinc.py
def __init__(self, offset):
self.offset = offset
def result(self, value):
return self._step1(value)
def _step1(self, x):
x = self._step2(x)
return self.offset + 1 + x
def _step2(self, x):
x = self._step3(x)
return self.offset + 2 + x
def _step3(self, x):
return self.offset + 3 + x
def get_multi_step_inc(offset):
return MultiStepInc(offset).result
--------
# file: multistepinc_example.py
from multistepinc import get_multi_step_inc
# get the result method of a configured
# MultiStepInc instance
# with offset = 10.
# Much like an object factory, but you
# mentioned to prefer to have the result
# method of the instance
# instead of the instance itself.
inc10 = get_multi_step_inc(10)
# invoke the inc10 method
result = inc10(1)
print(result)
# creating another instance with offset=2
inc2 = get_multi_step_inc(2)
result = inc2(1)
print(result)
# if you need to manipulate the object
# instance
# you have to (on file top)
from multistepinc import MultiStepInc
# and then
inc_obj = MultiStepInc(5)
# ...
# ... do something with your obj, then
result = inc_obj.result(1)
print(result)
Outputs:
37
13
22

Proper way to define function in a class that does not use self value

I am new to opp programming.I wanted to know what to do with a function that is inside the class but does not use self value
For example
class example:
def __init__(self,n):
self.number=n
def get_t(self,t):
return t*t
def main(self):
b=1
k=self.get_t(b)
From the example the function get_t has nothing to do with self value.
So I wanted to know where to place the function get_t or may be how to restructure the class.
Thank you for your consideration
What you're looking for are static methods. To declare a method static do it like this
#staticmethod
def foo():
pass
Nothing. Just let it be, Python won't complain about it and there's nothing fundamentally wrong about methods that doesn't use its instance. If your linter complains about it, you can shut up that warning. These kind of helper functions are often intended to be private methods that aren't intended to be used externally, you may want to prefix the name with underscore to indicate that.
Convert it into a free function. Python is an OOP language, but it's also a mixed paradigm language, unlike Java, for example, you can actually create a function outside of a class declaration. Pythonic code does not necessarily means putting everything into classes, and often a free function is perfectly suitable place for functions that doesn't involve a particular object instance.
def get_t(t):
return t*t
class example:
def main(self):
b=1
k=self.get_t(b)
If you want to be able to call it from the class by doing Example.get_t(blah) without having to have an instance, then you can either use the staticmethod or classmethod decorator. I suggest using classmethod which can do everything that staticmethod can do while the reverse isn't true and it's easier to make classmethod work correctly when you need to override it in a multi inheritance situation. staticmethod has a very tiny performance advantage, but you're microoptimizing if that's your concern.
class example:
#classmethod
def get_t(cls, t):
return t*t
def main(self):
b=1
k=self.get_t(b)
If get_t() is only being called from one method, you can put it as an inner function of that method:
class example:
def main(self):
def get_t(t):
return t * t
b=1
k=self.get_t(b)
With regards to naming, get_xxx is usually a code smell in python. The get_ prefix indicates that the method is likely a getter, and pythonic code usually don't use getters/setters, because the language supports property. What you have on here though, isn't actually a getter but rather a computation method, so it shouldn't be prefixed with get_. A better name might be calculate_t(t) or square(t).
Case 1: If self is there:-
class example:
def get_t(self,t):
return t*t
Then You can not access get_t function directly from class example like example.get_t(t=2) ,it will give you error. But you can access now by creating an object of class like q = example() and then q.get_t(t=2) , it will give you your desired result.
Case 2 : If self is not there:-
class example:
def get_t(t):
return t*t
Now You can directly access get_t function by class example like example.get_t(t=2) ,it will give you your desired result. But now you cannot use get_t function by creating object like q = example() then q.get_t(t=2) it will give you error.
Conclusion :- It all depends on your use case. But when you struck in this type of ambiguity use #staticmethod like given below:-
class example:
#staticmethod
def get_t(t):
return t*t
I hope it may help you.

Preprocessing data in Python before passing it to class constructor

Is it good style to create a separate method, in which I preprocess data, before I pass it to the constructor (in case the preprocessing is cumbersome), like so:
class C():
def __init__(self, input, more_input):
self.value = self.prepare_value(input, more_input)
def prepare_value(self, input, more_input):
#here I actually do some nontrivial stuff, over many lines
#for brevity I'm illustrating just a short, one-line operation
value = (input + more_input)/2
return value
print(C(10, 33).value) # has value 21.5
If you wanted to do it like this, then I'd suggest two things.
Make the prepare_value() method a static method by decorating with the #staticmethod decorator. Since it's not making any changes to the instance of the class itself, just returning a value then you shouldn't be making it a method of the instance. Hence, #staticmethod.
Signify that the method should only be used internally by using the name _prepare_value(). This doesn't actually make it private, but it's a well recognized convention to say to other developers (i.e. future you) "this method isn't designed to be used externally".
Overall my suggestion would be:
class C():
def __init__(self, input, more_input):
self.value = self._prepare_value(input, more_input)
#staticmethod
def _prepare_value(input, more_input):
value = (input + more_input)/2
return value

Difficulties with re-using a variable

here is a part of my code :
class projet(object):
def nameCouche(self):
valLissage = float(ui.valLissage.displayText())
return (valLissage)
valCouche = nameCouche() # asks for a positional argument but 'self' doesnt work
def choixTraitement(self):
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self, valCouche):
if ui.chkboxLissage.isChecked():
print(valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(valCouche))
So I would like to use valCouche in goLissage method but it doesnt work.
I thought that valCouche would have the argument of valLissage but instead it gives False as a value.
I've tried different alternatives but still doesnt work.
You've got multiple problems here.
First, if you write this in the middle of a class definition:
valCouche = nameCouche()
... you're creating a class attribute, which is shared by all instances, not a normal instance attribute.
Also, you're running this at class definition time. That means there is no self yet--there aren't any instances yet to be self--so you can't call a method like nameCouche, because you don't have anything to call it on.
What you want to do is call the method at instance initialization time, on the instance being initialized, and store the return value in an instance attribute:
def __init__(self):
self.valCouche = self.nameCouche()
Then, when you want to access this value in another method later, you have to access it as self.valCouche.
If you make those changes, it will work. But your object model still doesn't make much sense. Why is nameCouche a method when it doesn't have anything to do with the object, and doesn't access any of its attributes? Maybe it makes sense as a #staticmethod, but really, I think it makes more sense just as a plain function outside the class. In fact, none of the code you've written seems to have anything to do with the class.
This kind of cram-everything-into-the-class design is often a sign that you're trying to write Java code in Python, and haven't yet really understood how Python does OO. You might want to read a good tutorial on Python classes. But briefly: if you're writing a class just to have somewhere to dump a bunch of vaguely-related functions, what you want is a module, not a class. If you have some reason to have instances of that class, and the functions all act on the data of each instance, then you want a class.
You have to declare variabile in the __init__ method (constructor) and then use it in your code
ex:
class projet(object):
def __init__(self):
self.valCouche = ''
def nameCouche(self):
valLissage = float(ui.valLissage.displayText())
return (valLissage)
def choixTraitement(self):
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self, valCouche):
if ui.chkboxLissage.isChecked():
self.valCouche = self.nameCouche()
print(self.valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(self.valCouche))
you have to define an initialization function: def__init__(self)
defining valCouche as an instance attribute make it accessible on all the method so we have the following
class projet(object):
def __init__(self):
self.valCouche = ''
def nameCouche(self):
self.valCouche = float(ui.valLissage.displayText())
#staticmethod #here there is no need for self so it is a method of class
def choixTraitement():
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self):
if ui.chkboxLissage.isChecked():
print(self.valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(self.valCouche))

Categories