Difficulties with re-using a variable - python

here is a part of my code :
class projet(object):
def nameCouche(self):
valLissage = float(ui.valLissage.displayText())
return (valLissage)
valCouche = nameCouche() # asks for a positional argument but 'self' doesnt work
def choixTraitement(self):
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self, valCouche):
if ui.chkboxLissage.isChecked():
print(valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(valCouche))
So I would like to use valCouche in goLissage method but it doesnt work.
I thought that valCouche would have the argument of valLissage but instead it gives False as a value.
I've tried different alternatives but still doesnt work.

You've got multiple problems here.
First, if you write this in the middle of a class definition:
valCouche = nameCouche()
... you're creating a class attribute, which is shared by all instances, not a normal instance attribute.
Also, you're running this at class definition time. That means there is no self yet--there aren't any instances yet to be self--so you can't call a method like nameCouche, because you don't have anything to call it on.
What you want to do is call the method at instance initialization time, on the instance being initialized, and store the return value in an instance attribute:
def __init__(self):
self.valCouche = self.nameCouche()
Then, when you want to access this value in another method later, you have to access it as self.valCouche.
If you make those changes, it will work. But your object model still doesn't make much sense. Why is nameCouche a method when it doesn't have anything to do with the object, and doesn't access any of its attributes? Maybe it makes sense as a #staticmethod, but really, I think it makes more sense just as a plain function outside the class. In fact, none of the code you've written seems to have anything to do with the class.
This kind of cram-everything-into-the-class design is often a sign that you're trying to write Java code in Python, and haven't yet really understood how Python does OO. You might want to read a good tutorial on Python classes. But briefly: if you're writing a class just to have somewhere to dump a bunch of vaguely-related functions, what you want is a module, not a class. If you have some reason to have instances of that class, and the functions all act on the data of each instance, then you want a class.

You have to declare variabile in the __init__ method (constructor) and then use it in your code
ex:
class projet(object):
def __init__(self):
self.valCouche = ''
def nameCouche(self):
valLissage = float(ui.valLissage.displayText())
return (valLissage)
def choixTraitement(self):
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self, valCouche):
if ui.chkboxLissage.isChecked():
self.valCouche = self.nameCouche()
print(self.valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(self.valCouche))

you have to define an initialization function: def__init__(self)
defining valCouche as an instance attribute make it accessible on all the method so we have the following
class projet(object):
def __init__(self):
self.valCouche = ''
def nameCouche(self):
self.valCouche = float(ui.valLissage.displayText())
#staticmethod #here there is no need for self so it is a method of class
def choixTraitement():
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self):
if ui.chkboxLissage.isChecked():
print(self.valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(self.valCouche))

Related

Proper way to define function in a class that does not use self value

I am new to opp programming.I wanted to know what to do with a function that is inside the class but does not use self value
For example
class example:
def __init__(self,n):
self.number=n
def get_t(self,t):
return t*t
def main(self):
b=1
k=self.get_t(b)
From the example the function get_t has nothing to do with self value.
So I wanted to know where to place the function get_t or may be how to restructure the class.
Thank you for your consideration
What you're looking for are static methods. To declare a method static do it like this
#staticmethod
def foo():
pass
Nothing. Just let it be, Python won't complain about it and there's nothing fundamentally wrong about methods that doesn't use its instance. If your linter complains about it, you can shut up that warning. These kind of helper functions are often intended to be private methods that aren't intended to be used externally, you may want to prefix the name with underscore to indicate that.
Convert it into a free function. Python is an OOP language, but it's also a mixed paradigm language, unlike Java, for example, you can actually create a function outside of a class declaration. Pythonic code does not necessarily means putting everything into classes, and often a free function is perfectly suitable place for functions that doesn't involve a particular object instance.
def get_t(t):
return t*t
class example:
def main(self):
b=1
k=self.get_t(b)
If you want to be able to call it from the class by doing Example.get_t(blah) without having to have an instance, then you can either use the staticmethod or classmethod decorator. I suggest using classmethod which can do everything that staticmethod can do while the reverse isn't true and it's easier to make classmethod work correctly when you need to override it in a multi inheritance situation. staticmethod has a very tiny performance advantage, but you're microoptimizing if that's your concern.
class example:
#classmethod
def get_t(cls, t):
return t*t
def main(self):
b=1
k=self.get_t(b)
If get_t() is only being called from one method, you can put it as an inner function of that method:
class example:
def main(self):
def get_t(t):
return t * t
b=1
k=self.get_t(b)
With regards to naming, get_xxx is usually a code smell in python. The get_ prefix indicates that the method is likely a getter, and pythonic code usually don't use getters/setters, because the language supports property. What you have on here though, isn't actually a getter but rather a computation method, so it shouldn't be prefixed with get_. A better name might be calculate_t(t) or square(t).
Case 1: If self is there:-
class example:
def get_t(self,t):
return t*t
Then You can not access get_t function directly from class example like example.get_t(t=2) ,it will give you error. But you can access now by creating an object of class like q = example() and then q.get_t(t=2) , it will give you your desired result.
Case 2 : If self is not there:-
class example:
def get_t(t):
return t*t
Now You can directly access get_t function by class example like example.get_t(t=2) ,it will give you your desired result. But now you cannot use get_t function by creating object like q = example() then q.get_t(t=2) it will give you error.
Conclusion :- It all depends on your use case. But when you struck in this type of ambiguity use #staticmethod like given below:-
class example:
#staticmethod
def get_t(t):
return t*t
I hope it may help you.

How to set functions for a property()?

This is a snippet for registers for an emulator I'm working on:
class registers(object):
def __init__(self):
self._AF = registerpair()
def _get_AF(self):
return self._AF.getval()
def _set_AF(self, val):
self._AF.setval(val)
AF = property(_get_AF, _set_AF)
The registerpair() class has an increment() method. I would like to know if there is any way I could do the following:
r = registers()
r.AF.increment()
rather than having to do:
r._AF.increment()
As is, no. You have set the fget method to return a getval() for your registerpair() class.
Since the property is for the _AF attribute which is a registerpair() instance, I believe it would be more reasonable to change your fget (and fset for that matter) to actually return it, and maybe create an auxiliary function to actually get the value with getval() or access it directly.
So if your _get_AF looked something like:
def _get_AF(self):
return self._AF
you can then call r.AF.increment() just fine. Then you could move the getval() call to another function in your class:
def getAFval(self):
self._AF.getval()
Or just make direct calls like r.AF.getval() which seems like the most clear way to do things.
You are effectively modifying the interface to the registerpair class using this wrapper class, and in doing so hiding the original interface. As such in your new interface the property() in Python refers to the values stored in the registerpair, not to the registerpair itself, as it reimplements the getval() and setval() interface of the registerpair.
So a couple of suggestions, firstly if this wrapper class is just reimplementing the interface to the registerpair, should you not just inherit from the registerpair, that way the original interface would be available?
Alternatively you could implement the remainder of the registerpair interface, using for example a method such as registers.increment_AF():
class registers(object):
def __init__(self):
self._AF = registerpair()
def _get_AF(self):
return self._AF.getval()
def _set_AF(self, val):
self._AF.setval(val)
AF = property(_get_AF, _set_AF)
def increment_AF(self):
self._AF.increment()
If I understand you correctly
You can call r._AF.increment() which references registerpair() object but since self._AF is a private method you cannot use
r.AF.increment()
for further information..check this
https://www.python.org/dev/peps/pep-0008/
an extract from this site
_single_leading_underscore : weak "internal use" indicator. E.g. from M import * does not import objects whose name starts with an underscore.
single_trailing_underscore_ : used by convention to avoid conflicts with Python keyword, e.g.

Python3, using object instance within another class

I'm trying to modify class attribute by reference to object in __init__ method and then use it in another method. Sadly the following code sample doesn't work as expected...
CODE
class Translator:
#list of attributes
parser=None
def __init__(self):
parser = Parser_class() ...
#some other commands
def Translate(self):
something=self.parser.GenerateHead() ...
#more commands
COMPILE ERR
AttributeError: 'NoneType' object has no attribute 'GenerateHead'
I know that I can give it to the Translate method as argument, I'm just curious why this statement within Python doesn't work.
You're doing your instance attributes wrong.
First off, you don't need to declare your attributes ahead of time. Putting parser = None at the top level of the class creates a class variable named parser, which I don't think is what you want. Usually in Python you can add new instance attributes at any time by a simple assignment: instance.attr = "whatever".
Second, when you want to do an instance assignment from within a method, you need to use self to refer to the instance. If you leave off self, you'll be assigning to a local variable inside your function, not to an instance or class variable. Actually, the specific name self isn't necessary, but you do need to use the first argument to the method (and it's probably not a good idea to break the convention of naming that self).
So, to fix your code, do this:
class Translator:
# don't declare variables at class level (unless you actually want class variables)
def __init__(self):
self.parser = Parser_class() # use self to assign an instance attribute
def Translate(self):
something = self.parser.GenerateHead() # this should now work

Call a function inside a class when calling the class in python

This simple example is what I dont get to work or understand in my more complex script:
class printclass():
string="yes"
def dotheprint(self):
print self.string
dotheprint(self)
printclass()
When the class is called, I expected it to run the function, but instead it will tell me that "self is not defined". Im aware this happens on the line:
dotheprint(self)
But I dont understand why. What should I change for the class to run the function with the data it already has within? (string)
You misunderstand how classes work. You put your call inside the class definition body; there is no instance at that time, there is no self.
Call the method on the instance:
instance = printclass()
instance.dotheprint()
Now the dotheprint() method is bound, there is an instance for self to refer to.
If you need dotheprint() to be called when you create an instance, give the class an __init__ method. This method (the initializer) is called whenever you create an instance:
class printclass():
string="yes"
def __init__(self):
self.dotheprint()
def dotheprint(self):
print self.string
printclass()
You really need to understand Object-Oriented Programming and its implementation in Python.
You cannot "call" a class like any function. You have to create an instance, which has a lifetime and methods linked to it :
o = printclass() # new object printclass
o.dotheprint() #
A better implementation of your class
class printclass():
string="yes" #beware, this is instance-independant (except if modified later on)
def dotheprint(self):
print self.string
def __init__(self): # it's an initializer, a method called right after the constructor
self.dotheprint()

Why it's not possible to create object attribute outside object methods?

While researching about python class attribute and instance attribute, I came to know that it's not possible to create object attribute outside object methods (or may be class method). Like code below will generate an "NameError" in python.
class test(object):
def __init__(self):
self.lst = []
self.str = 'xyz'
Why python doesn't allow this? I'm not questioning language creator's decision, but any reason behind this. Like, is it technically incorrect or any other disadvantage of this behavior.
You are defining a class, so there is no instance to point to outside methods. Drop the `self:
class test(object):
def __init__(self):
self.lst = []
str = 'xyz'
self points to the instance, not the class. You either need to create an instance and assign directly to attributes (test().str = 'xyz') or you need to be inside a method (when self can actually refer to an instance).
self is not a special name in python, you could use \
class test(object):
def __init__(foo):
foo.lst = []
If you want. Every method of a class gets the instance explicitly passed to it as the first parameter, you can call it whatever you want. Trying to access a parameter outside the scope of the method obviously won't work.

Categories