Why it's not possible to create object attribute outside object methods? - python

While researching about python class attribute and instance attribute, I came to know that it's not possible to create object attribute outside object methods (or may be class method). Like code below will generate an "NameError" in python.
class test(object):
def __init__(self):
self.lst = []
self.str = 'xyz'
Why python doesn't allow this? I'm not questioning language creator's decision, but any reason behind this. Like, is it technically incorrect or any other disadvantage of this behavior.

You are defining a class, so there is no instance to point to outside methods. Drop the `self:
class test(object):
def __init__(self):
self.lst = []
str = 'xyz'
self points to the instance, not the class. You either need to create an instance and assign directly to attributes (test().str = 'xyz') or you need to be inside a method (when self can actually refer to an instance).

self is not a special name in python, you could use \
class test(object):
def __init__(foo):
foo.lst = []
If you want. Every method of a class gets the instance explicitly passed to it as the first parameter, you can call it whatever you want. Trying to access a parameter outside the scope of the method obviously won't work.

Related

How to decorate a python class and override a method?

I have a class
class A:
def sample_method():
I would like to decorate class A sample_method() and override the contents of sample_method()
class DecoratedA(A):
def sample_method():
The setup above resembles inheritance, but I need to keep the preexisting instance of class A when the decorated function is used.
a # preexisting instance of class A
decorated_a = DecoratedA(a)
decorated_a.functionInClassA() #functions in Class A called as usual with preexisting instance
decorated_a.sample_method() #should call the overwritten sample_method() defined in DecoratedA
What is the proper way to go about this?
There isn't a straightforward way to do what you're asking. Generally, after an instance has been created, it's too late to mess with the methods its class defines.
There are two options you have, as far as I see it. Either you create a wrapper or proxy object for your pre-existing instance, or you modify the instance to change its behavior.
A proxy defers most behavior to the object itself, while only adding (or overriding) some limited behavior of its own:
class Proxy:
def __init__(self, obj):
self.obj = obj
def overridden_method(self): # add your own limited behavior for a few things
do_stuff()
def __getattr__(self, name): # and hand everything else off to the other object
return getattr(self.obj, name)
__getattr__ isn't perfect here, it can only work for regular methods, not special __dunder__ methods that are often looked up directly in the class itself. If you want your proxy to match all possible behavior, you probably need to add things like __add__ and __getitem__, but that might not be necessary in your specific situation (it depends on what A does).
As for changing the behavior of the existing object, one approach is to write your subclass, and then change the existing object's class to be the subclass. This is a little sketchy, since you won't have ever initialized the object as the new class, but it might work if you're only modifying method behavior.
class ModifiedA(A):
def overridden_method(self): # do the override in a normal subclass
do_stuff()
def modify_obj(obj): # then change an existing object's type in place!
obj.__class__ = ModifiedA # this is not terribly safe, but it can work
You could also consider adding an instance variable that would shadow the method you want to override, rather than modifying __class__. Writing the function could be a little tricky, since it won't get bound to the object automatically when called (that only happens for functions that are attributes of a class, not attributes of an instance), but you could probably do the binding yourself (with partial or lambda if you need to access self.
First, why not just define it from the beginning, how you want it, instead of decorating it?
Second, why not decorate the method itself?
To answer the question:
You can reassign it
class A:
def sample_method(): ...
pass
A.sample_method = DecoratedA.sample_method;
but that affects every instance.
Another solution is to reassign the method for just one object.
import functools;
a.sample_method = functools.partial(DecoratedA.sample_method, a);
Another solution is to (temporarily) change the type of an existing object.
a = A();
a.__class__ = DecoratedA;
a.sample_method();
a.__class__ = A;

Difficulties with re-using a variable

here is a part of my code :
class projet(object):
def nameCouche(self):
valLissage = float(ui.valLissage.displayText())
return (valLissage)
valCouche = nameCouche() # asks for a positional argument but 'self' doesnt work
def choixTraitement(self):
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self, valCouche):
if ui.chkboxLissage.isChecked():
print(valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(valCouche))
So I would like to use valCouche in goLissage method but it doesnt work.
I thought that valCouche would have the argument of valLissage but instead it gives False as a value.
I've tried different alternatives but still doesnt work.
You've got multiple problems here.
First, if you write this in the middle of a class definition:
valCouche = nameCouche()
... you're creating a class attribute, which is shared by all instances, not a normal instance attribute.
Also, you're running this at class definition time. That means there is no self yet--there aren't any instances yet to be self--so you can't call a method like nameCouche, because you don't have anything to call it on.
What you want to do is call the method at instance initialization time, on the instance being initialized, and store the return value in an instance attribute:
def __init__(self):
self.valCouche = self.nameCouche()
Then, when you want to access this value in another method later, you have to access it as self.valCouche.
If you make those changes, it will work. But your object model still doesn't make much sense. Why is nameCouche a method when it doesn't have anything to do with the object, and doesn't access any of its attributes? Maybe it makes sense as a #staticmethod, but really, I think it makes more sense just as a plain function outside the class. In fact, none of the code you've written seems to have anything to do with the class.
This kind of cram-everything-into-the-class design is often a sign that you're trying to write Java code in Python, and haven't yet really understood how Python does OO. You might want to read a good tutorial on Python classes. But briefly: if you're writing a class just to have somewhere to dump a bunch of vaguely-related functions, what you want is a module, not a class. If you have some reason to have instances of that class, and the functions all act on the data of each instance, then you want a class.
You have to declare variabile in the __init__ method (constructor) and then use it in your code
ex:
class projet(object):
def __init__(self):
self.valCouche = ''
def nameCouche(self):
valLissage = float(ui.valLissage.displayText())
return (valLissage)
def choixTraitement(self):
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self, valCouche):
if ui.chkboxLissage.isChecked():
self.valCouche = self.nameCouche()
print(self.valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(self.valCouche))
you have to define an initialization function: def__init__(self)
defining valCouche as an instance attribute make it accessible on all the method so we have the following
class projet(object):
def __init__(self):
self.valCouche = ''
def nameCouche(self):
self.valCouche = float(ui.valLissage.displayText())
#staticmethod #here there is no need for self so it is a method of class
def choixTraitement():
ui.okLissage.clicked.connect(p.goLissage)
def goLissage(self):
if ui.chkboxLissage.isChecked():
print(self.valCouche) # result is False
os.system(r'"C:\Program Files\FME\fme.exe" D:\Stelios\..... --MAX_NUM_POINTS {0}'.format(self.valCouche))

Python3, using object instance within another class

I'm trying to modify class attribute by reference to object in __init__ method and then use it in another method. Sadly the following code sample doesn't work as expected...
CODE
class Translator:
#list of attributes
parser=None
def __init__(self):
parser = Parser_class() ...
#some other commands
def Translate(self):
something=self.parser.GenerateHead() ...
#more commands
COMPILE ERR
AttributeError: 'NoneType' object has no attribute 'GenerateHead'
I know that I can give it to the Translate method as argument, I'm just curious why this statement within Python doesn't work.
You're doing your instance attributes wrong.
First off, you don't need to declare your attributes ahead of time. Putting parser = None at the top level of the class creates a class variable named parser, which I don't think is what you want. Usually in Python you can add new instance attributes at any time by a simple assignment: instance.attr = "whatever".
Second, when you want to do an instance assignment from within a method, you need to use self to refer to the instance. If you leave off self, you'll be assigning to a local variable inside your function, not to an instance or class variable. Actually, the specific name self isn't necessary, but you do need to use the first argument to the method (and it's probably not a good idea to break the convention of naming that self).
So, to fix your code, do this:
class Translator:
# don't declare variables at class level (unless you actually want class variables)
def __init__(self):
self.parser = Parser_class() # use self to assign an instance attribute
def Translate(self):
something = self.parser.GenerateHead() # this should now work

Call a function inside a class when calling the class in python

This simple example is what I dont get to work or understand in my more complex script:
class printclass():
string="yes"
def dotheprint(self):
print self.string
dotheprint(self)
printclass()
When the class is called, I expected it to run the function, but instead it will tell me that "self is not defined". Im aware this happens on the line:
dotheprint(self)
But I dont understand why. What should I change for the class to run the function with the data it already has within? (string)
You misunderstand how classes work. You put your call inside the class definition body; there is no instance at that time, there is no self.
Call the method on the instance:
instance = printclass()
instance.dotheprint()
Now the dotheprint() method is bound, there is an instance for self to refer to.
If you need dotheprint() to be called when you create an instance, give the class an __init__ method. This method (the initializer) is called whenever you create an instance:
class printclass():
string="yes"
def __init__(self):
self.dotheprint()
def dotheprint(self):
print self.string
printclass()
You really need to understand Object-Oriented Programming and its implementation in Python.
You cannot "call" a class like any function. You have to create an instance, which has a lifetime and methods linked to it :
o = printclass() # new object printclass
o.dotheprint() #
A better implementation of your class
class printclass():
string="yes" #beware, this is instance-independant (except if modified later on)
def dotheprint(self):
print self.string
def __init__(self): # it's an initializer, a method called right after the constructor
self.dotheprint()

Classes in python, how to set an attributes

When I write class in python, most of the time, I am eager to set variables I use, as properties of the object. Is there any rule or general guidelines about which variables should be used as class/instance attribute and which should not?
for example:
class simple(object):
def __init(self):
a=2
b=3
return a*b
class simple(object):
def __init(self):
self.a=2
self.b=3
return a*b
While I completely understand the attributes should be a property of the object. This is simple to understand when the class declaration is simple but as the program goes longer and longer and there are many places where the data exchange between various modules should be done, I get confused on where I should use a/b or self.a/self.b. Is there any guidelines for this?
Where you use self.a you are creating a property, so this can be accessed from outside the class and persists beyond that function. These should be used for storing data about the object.
Where you use a it is a local variable, and only lasts while in the scope of that function, so should be used where you are only using it within the function (as in this case).
Note that __init is misleading, as it looks like __init__ - but isn't the constructor. If you intended them to be the constructor, then it makes no sense to return a value (as the new object is what is returned).
class Person(object):
def __init__(self, name):
# Introduce all instance variables on __init__
self.name = name
self.another = None
def get_name(self):
# get_name has access to the `instance` variable 'name'
return self.name
So if you want a variable to be available on more than one method, make
it an instance variable.
Notice my comment on introducing all instance vars on __init__.
Although the example below is valid python don't do it.
class Person(object):
def __init__(self):
self.a = 0
def foo(self):
self.b = 1 # Whoa, introduced new instance variable
Instead initialize all your instance variables on __init__ and set
them to None if no other value is appropriate for them.
I try to imagine what I want the API of my class to look like prior to implementing it. I think to myself, If I didn't write this class, would I want to read the documentation about what this particular variable does? If reading that documentation would simply waste my time, then it should probably be a local variable.
Occasionally, you need to preserve some information, but you wouldn't necessarily want that to be part of the API, which is when you use the convention of appending an underscore. e.g. self._some_data_that_is_not_part_of_the_api.
The self parameter refers to the object itself. So if you need to use on of the class attributes outside of the class you would it call it as the name of class instance and the attribute name. I don't think there is any guideline on when to use self, it all depends on your need. When you are building a class you should try to think about what you will use the variables you creating for. If you know for sure that you will need that specific attribute in the program you are importing your class, then add self.

Categories