I have following graph
I am using python's scipy.signal.find_peaks to find the peaks. But I am not sure how do I do that. I did following :
per = np.percentile(x,[70])
peaks_control = findPeaks(x, per[0])
where x is the signal
array([1.07541259e+09, 1.13851049e+09, 1.19241492e+09, 1.23706527e+09,
1.27240093e+09, 1.29836131e+09, 1.31217483e+09, 1.32037296e+09,
1.31908858e+09, 1.30896503e+09, 1.29216550e+09, 1.26958042e+09,
1.24561632e+09, 1.21202121e+09, 1.16869371e+09, 1.11054499e+09,
1.04006154e+09, 9.65663403e+08, 8.87706760e+08, 8.09340093e+08,
7.37568765e+08, 6.79736364e+08, 6.38576457e+08, 6.06062937e+08,
5.80650350e+08, 5.55089744e+08, 5.36334499e+08, 5.20236597e+08,
5.06529837e+08, 4.91825175e+08, 4.77937063e+08, 4.65475058e+08,
4.56520513e+08, 4.48393240e+08, 4.41944988e+08, 4.34822844e+08,
4.33688578e+08, 4.33451049e+08, 4.36256177e+08, 4.33553613e+08,
4.29191142e+08, 4.28492541e+08, 4.24465967e+08, 4.20074825e+08,
4.19935897e+08, 4.16652681e+08, 4.12419580e+08, 4.11747552e+08,
4.08801166e+08, 4.02351981e+08, 3.99620513e+08, 3.98716550e+08,
3.46023077e+08, 3.53969464e+08, 4.17131235e+08, 5.19363869e+08,
6.50956410e+08, 8.01530303e+08, 9.50162937e+08, 1.08249790e+09,
1.18242378e+09, 1.22732168e+09, 1.20123077e+09, 1.21067599e+09,
1.21556410e+09, 1.21272261e+09, 1.20310023e+09, 1.18692774e+09,
1.16694033e+09, 1.14330117e+09, 1.11635338e+09, 1.07947529e+09,
1.03222145e+09, 9.73427972e+08, 9.08558974e+08, 8.39966200e+08,
7.70457343e+08, 7.04976224e+08, 6.49436131e+08, 6.02085548e+08,
5.68915385e+08, 5.41638928e+08, 5.18758741e+08, 5.01973660e+08,
4.88766667e+08, 4.77643823e+08, 4.65681818e+08, 4.56193240e+08,
4.46851515e+08, 4.36135198e+08, 4.32282984e+08, 4.27913520e+08,
4.23408625e+08, 4.24119580e+08, 4.22399068e+08, 4.22415385e+08,
4.20193939e+08, 4.17638462e+08, 4.14822378e+08, 4.10636364e+08,
4.08388345e+08, 4.04844522e+08, 4.00571562e+08, 4.00841026e+08,
4.00764802e+08, 4.00432867e+08, 4.00336364e+08, 4.00724709e+08,
4.03048019e+08, 3.57437995e+08, 3.62371096e+08, 4.16658741e+08,
5.10148019e+08, 6.31750117e+08, 7.65175991e+08, 8.96832168e+08,
1.01666597e+09, 1.10373263e+09, 1.14380816e+09, 1.11629790e+09,
1.12228904e+09, 1.12378788e+09, 1.11974825e+09, 1.10812774e+09,
1.09125035e+09, 1.07033566e+09, 1.04667389e+09, 1.02016830e+09,
9.86036830e+08, 9.42176457e+08, 8.88900233e+08, 8.27962005e+08,
7.64362238e+08, 7.00755245e+08, 6.42390909e+08, 5.92395338e+08,
5.52426107e+08, 5.26319114e+08, 5.03317249e+08, 4.85524942e+08,
4.70421911e+08, 4.59389510e+08, 4.51644988e+08, 4.46288578e+08,
4.41076923e+08, 4.37533566e+08, 4.31993007e+08, 4.28625641e+08,
4.25406294e+08, 4.21161538e+08, 4.19049650e+08, 4.16719347e+08,
4.13124242e+08, 4.08404429e+08, 4.06154545e+08, 4.03386014e+08,
4.00980420e+08, 3.99442657e+08, 3.97792075e+08, 3.95606527e+08,
3.97922378e+08, 3.98345221e+08, 3.96253613e+08, 3.95703030e+08,
3.96108392e+08, 3.67136830e+08, 3.58382051e+08, 3.95844289e+08,
4.70853846e+08, 5.76629837e+08, 6.97682284e+08, 8.21169930e+08,
9.32588112e+08, 1.01885804e+09, 1.06315152e+09, 1.05128159e+09,
1.03944545e+09, 1.03769580e+09, 1.03132145e+09, 1.02008601e+09,
1.00327389e+09, 9.85387646e+08, 9.66403030e+08, 9.44620746e+08,
9.18596737e+08, 8.82269697e+08, 8.37750816e+08, 7.84877156e+08,
7.27590443e+08, 6.70183217e+08, 6.14567832e+08, 5.67404895e+08,
5.30862471e+08, 5.03108625e+08, 4.84348718e+08, 4.68116550e+08,
4.55809907e+08, 4.46616783e+08, 4.39725175e+08, 4.34323077e+08])
The peaks I get are adjacent to each other, as I can see that there is little bump in second, third and forth peak sites.
How should I calculate it and ignore such adjacent ones. To calculate the width, prominecne, etc I need to calculate the peaks. If I know it already I might be able to put some threshold.
As you asked in the comments, I'll provide you an example. Please note, this is only an example, an Exploratory Data Analysis is always needed to choose the best way to reach your goal.
So, let's create some noisy data
import numpy as np
from scipy.signal import find_peaks, periodogram
import matplotlib.pyplot as plt
size = 100
a = np.linspace(1, .5, size)
x = np.linspace(0, 50, size)
np.random.seed(0)
y = a * np.sin(x) + np.random.normal(0, .1, size) + 5
now, let's try to find the peaks with find_peaks from scipy.signal
peaks = find_peaks(y)[0]
plt.plot(x, y)
plt.plot(x[peaks], y[peaks], marker='o', ls='none')
plt.show()
as you can see, there are some "wrong" peaks. We need to set distance argument in find_peaks (see documentation).
Let us suppose that we don't know the distance between the peaks. In this case, we can see that the data are periodic. So we can find the period with a periodogram and use the period as distance in find_peaks
_f, _p = periodogram(y, nfft=2**6)
# calculate the sample rate of x
sample_rate = 1 / np.median(np.diff(x))
periods = 1 / _f[1:] / sample_rate
density = _p[1:] / _p[1:].max()
max_density_idx = density.argmax()
period = periods[max_density_idx]
plt.semilogx(periods, density)
plt.scatter(period, density[max_density_idx], color='r')
plt.title(f"period {period:.2f}")
plt.show()
Now we can use the period as distance argument in find_peaks
peaks = find_peaks(y, distance=period)[0]
plt.plot(x, y)
plt.plot(x[peaks], y[peaks], marker='o', ls='none')
plt.show()
update
In your specific case, it's a little bit different.
Define the signal (I'll call variables X and Y)
Y = np.array([1.07541259e+09, 1.13851049e+09, 1.19241492e+09, 1.23706527e+09, 1.27240093e+09, 1.29836131e+09, 1.31217483e+09, 1.32037296e+09, 1.31908858e+09, 1.30896503e+09, 1.29216550e+09, 1.26958042e+09, 1.24561632e+09, 1.21202121e+09, 1.16869371e+09, 1.11054499e+09, 1.04006154e+09, 9.65663403e+08, 8.87706760e+08, 8.09340093e+08, 7.37568765e+08, 6.79736364e+08, 6.38576457e+08, 6.06062937e+08, 5.80650350e+08, 5.55089744e+08, 5.36334499e+08, 5.20236597e+08, 5.06529837e+08, 4.91825175e+08, 4.77937063e+08, 4.65475058e+08, 4.56520513e+08, 4.48393240e+08, 4.41944988e+08, 4.34822844e+08, 4.33688578e+08, 4.33451049e+08, 4.36256177e+08, 4.33553613e+08, 4.29191142e+08, 4.28492541e+08, 4.24465967e+08, 4.20074825e+08, 4.19935897e+08, 4.16652681e+08, 4.12419580e+08, 4.11747552e+08, 4.08801166e+08, 4.02351981e+08, 3.99620513e+08, 3.98716550e+08, 3.46023077e+08, 3.53969464e+08, 4.17131235e+08, 5.19363869e+08, 6.50956410e+08, 8.01530303e+08, 9.50162937e+08, 1.08249790e+09, 1.18242378e+09, 1.22732168e+09, 1.20123077e+09, 1.21067599e+09, 1.21556410e+09, 1.21272261e+09, 1.20310023e+09, 1.18692774e+09, 1.16694033e+09, 1.14330117e+09, 1.11635338e+09, 1.07947529e+09, 1.03222145e+09, 9.73427972e+08, 9.08558974e+08, 8.39966200e+08, 7.70457343e+08, 7.04976224e+08, 6.49436131e+08, 6.02085548e+08, 5.68915385e+08, 5.41638928e+08, 5.18758741e+08, 5.01973660e+08, 4.88766667e+08, 4.77643823e+08, 4.65681818e+08, 4.56193240e+08, 4.46851515e+08, 4.36135198e+08, 4.32282984e+08, 4.27913520e+08, 4.23408625e+08, 4.24119580e+08, 4.22399068e+08, 4.22415385e+08, 4.20193939e+08, 4.17638462e+08, 4.14822378e+08, 4.10636364e+08, 4.08388345e+08, 4.04844522e+08, 4.00571562e+08, 4.00841026e+08, 4.00764802e+08, 4.00432867e+08, 4.00336364e+08, 4.00724709e+08, 4.03048019e+08, 3.57437995e+08, 3.62371096e+08, 4.16658741e+08, 5.10148019e+08, 6.31750117e+08, 7.65175991e+08, 8.96832168e+08, 1.01666597e+09, 1.10373263e+09, 1.14380816e+09, 1.11629790e+09, 1.12228904e+09, 1.12378788e+09, 1.11974825e+09, 1.10812774e+09, 1.09125035e+09, 1.07033566e+09, 1.04667389e+09, 1.02016830e+09, 9.86036830e+08, 9.42176457e+08, 8.88900233e+08, 8.27962005e+08, 7.64362238e+08, 7.00755245e+08, 6.42390909e+08, 5.92395338e+08, 5.52426107e+08, 5.26319114e+08, 5.03317249e+08, 4.85524942e+08, 4.70421911e+08, 4.59389510e+08, 4.51644988e+08, 4.46288578e+08, 4.41076923e+08, 4.37533566e+08, 4.31993007e+08, 4.28625641e+08, 4.25406294e+08, 4.21161538e+08, 4.19049650e+08, 4.16719347e+08, 4.13124242e+08, 4.08404429e+08, 4.06154545e+08, 4.03386014e+08, 4.00980420e+08, 3.99442657e+08, 3.97792075e+08, 3.95606527e+08, 3.97922378e+08, 3.98345221e+08, 3.96253613e+08, 3.95703030e+08, 3.96108392e+08, 3.67136830e+08, 3.58382051e+08, 3.95844289e+08, 4.70853846e+08, 5.76629837e+08, 6.97682284e+08, 8.21169930e+08, 9.32588112e+08, 1.01885804e+09, 1.06315152e+09, 1.05128159e+09, 1.03944545e+09, 1.03769580e+09, 1.03132145e+09, 1.02008601e+09, 1.00327389e+09, 9.85387646e+08, 9.66403030e+08, 9.44620746e+08, 9.18596737e+08, 8.82269697e+08, 8.37750816e+08, 7.84877156e+08, 7.27590443e+08, 6.70183217e+08, 6.14567832e+08, 5.67404895e+08, 5.30862471e+08, 5.03108625e+08, 4.84348718e+08, 4.68116550e+08, 4.55809907e+08, 4.46616783e+08, 4.39725175e+08, 4.34323077e+08])
X = np.arange(Y.size)
Since Y.size is 200 and in your plot there are 200 secs, I assume that the sample rate is 1 sec.
If we search for the peaks with default distance we find a lot of unwanted peaks
peaks = find_peaks(Y)[0]
plt.plot(X, Y)
plt.plot(X[peaks], Y[peaks], marker='o', ls='none')
plt.show()
Let's do a periodogram
_f, _p = periodogram(Y, nfft=2**12)
# the sample rate of your signal
sample_rate = 1
periods = 1 / _f[1:] / sample_rate
density = _p[1:] / _p[1:].max()
max_density_idx = density.argmax()
period = periods[max_density_idx]
p_peaks_idx = find_peaks(density)[0]
plt.semilogx(periods, density)
plt.scatter(period, density[max_density_idx], color='r')
period_peaks = []
for p_peak in p_peaks_idx:
if density[p_peak] < .1:
continue
period_peaks.append(periods[p_peak])
plt.scatter(periods[p_peak], density[p_peak])
plt.text(periods[p_peak], density[p_peak], f"{periods[p_peak]:.1f} ", ha='right', va='center')
plt.title('periodogram')
plt.show()
We found two main periods
period_peaks
[56.888888888888886, 28.444444444444443]
If we use the higher density period (56.9, the fundamental, or 1st harmonic) we miss a peak
peaks = find_peaks(Y, distance=period_peaks[0])[0]
plt.plot(X, Y)
plt.plot(X[peaks], Y[peaks], marker='o', ls='none')
plt.show()
This could be because
you have too few observations
the periodicity is not constant
If we empirically subtract a quantity (say 10) from the period, we find all the peaks
peaks = find_peaks(Y, distance=period_peaks[0] - 10)[0]
plt.plot(X, Y)
plt.plot(X[peaks], Y[peaks], marker='o', ls='none')
plt.show()
So we got peaks at
X[peaks]
array([ 7, 61, 118, 174])
taking the difference, we see they're not regular (at this sample rate and with these few observations)
np.diff(X[peaks])
array([54, 57, 56])
I have a file with 3 columns of data: Zenith (Z, from 0 to 90°) and Azimuth (A, from 0 to 360°). And radiance as the color variable.
I need to use python with matplotlib to plot this data into something resembling this:
This is my code so far (it returns an error):
import matplotlib.pyplot as plt
import numpy as np
# `data` has the following shape:
# [
# [Zenith value going from 0 to 90],
# [Azimuth values (0 to 365) increasing by 1 and looping back after 365],
# [radiance: floats that need to be mapped by the color value]
#]
data = [[6.000e+00 1.200e+01 1.700e+01 2.300e+01 2.800e+01 3.400e+01 3.900e+01
4.500e+01 5.000e+01 5.600e+01 6.200e+01 6.700e+01 7.300e+01 7.800e+01
8.400e+01 8.900e+01 3.934e+01 4.004e+01 4.054e+01 4.114e+01 4.154e+01
4.204e+01 4.254e+01 4.294e+01 4.334e+01 4.374e+01 4.414e+01 4.454e+01
4.494e+01 4.534e+01 4.564e+01 4.604e+01 4.644e+01 4.684e+01 4.714e+01
4.754e+01 4.794e+01 4.824e+01 4.864e+01 4.904e+01 4.944e+01 4.984e+01
5.014e+01 5.054e+01 5.094e+01 5.134e+01 5.174e+01 5.214e+01 5.264e+01
5.304e+01 5.344e+01 5.394e+01 5.444e+01 5.494e+01 5.544e+01 5.604e+01
5.674e+01 5.764e+01]
[1.960e+02 3.600e+01 2.360e+02 7.600e+01 2.760e+02 1.160e+02 3.160e+02
1.560e+02 3.560e+02 1.960e+02 3.600e+01 2.360e+02 7.600e+01 2.760e+02
1.160e+02 3.160e+02 6.500e+00 3.400e+00 3.588e+02 2.500e+00 3.594e+02
3.509e+02 5.000e-01 6.900e+00 1.090e+01 3.478e+02 1.250e+01 1.050e+01
7.300e+00 2.700e+00 3.571e+02 3.507e+02 1.060e+01 3.200e+00 3.556e+02
3.480e+02 7.300e+00 3.597e+02 3.527e+02 1.260e+01 6.600e+00 1.200e+00
3.570e+02 3.538e+02 3.520e+02 3.516e+02 3.528e+02 3.560e+02 1.200e+00
8.800e+00 3.567e+02 1.030e+01 6.800e+00 8.300e+00 3.583e+02 3.581e+02
3.568e+02 3.589e+02]
[3.580e-04 6.100e-04 3.220e-04 4.850e-04 4.360e-04 2.910e-04 1.120e-03
2.320e-04 4.300e-03 2.680e-04 1.700e-03 3.790e-04 7.460e-04 8.190e-04
1.030e-03 3.650e-03 3.050e-03 3.240e-03 3.340e-03 3.410e-03 3.490e-03
3.290e-03 3.630e-03 3.510e-03 3.320e-03 3.270e-03 3.280e-03 3.470e-03
3.720e-03 3.960e-03 3.980e-03 3.700e-03 3.630e-03 4.100e-03 4.080e-03
3.600e-03 3.990e-03 4.530e-03 4.040e-03 3.630e-03 4.130e-03 4.370e-03
4.340e-03 4.210e-03 4.100e-03 4.090e-03 4.190e-03 4.380e-03 4.460e-03
4.080e-03 4.420e-03 3.960e-03 4.230e-03 4.120e-03 4.440e-03 4.420e-03
4.370e-03 4.380e-03]]
rad = data[0]
azm = data[1]
# From what I understand, I need to create a meshgrid from the zenith and azimuth values
r, th = np.meshgrid(rad, azm)
z = data[2] # This doesn't work as `pcolormesh` expects this to be a 2d array
plt.subplot(projection="polar")
plt.pcolormesh(th, r, z, shading="auto")
plt.plot(azm, r, color="k", ls="none")
plt.show()
Note: my actual data goes on for 56k lines and looks like this (Ignore the 4th column):
The example data above is my attempt to reduce the resolution of this massive file, so I only used 1/500 of the lines of data. This might be the wrong way to reduce the resolution, please correct me if it is!
Every tutorial I've seen generate the z value from the r array generated by meshgrid. This is leaving me confused about how I would convert my z column into a 2d array that would properly map to the zenith and azimuth values.
They'll use something like this:
z = (r ** 2.0) / 4.0
So, taking the exact shape of r and applying a transformation to create the color.
The solution was in the data file all along. I needed to better understand what np.meshrid actually did. Turns out the data already is a 2d array, it just needed to be reshaped. I also found a flaw in the file, fixing it reduced its lines from 56k to 15k. This was small enough that I did not need to reduce the resolution.
Here's how I reshaped my data, and what the solution looked like:
import matplotlib.pyplot as plt
import numpy as np
with open("data.txt") as f:
lines = np.array(
[
[float(n) for n in line.split("\t")]
for i, line in enumerate(f.read().splitlines())
]
)
data = [np.reshape(a, (89, 180)) for a in lines.T]
rad = np.radians(data[1])
azm = data[0]
z = data[2]
plt.subplot(projection="polar")
plt.pcolormesh(rad, azm, z, cmap="coolwarm", shading="auto")
plt.colorbar()
plt.show()
The simplest way to plot the given data is with a polar scatter plot.
Using blue for low values and red for high values, it could look like:
import matplotlib.pyplot as plt
import numpy as np
data = [[6.000e+00, 1.200e+01, 1.700e+01, 2.300e+01, 2.800e+01, 3.400e+01, 3.900e+01, 4.500e+01, 5.000e+01, 5.600e+01, 6.200e+01, 6.700e+01, 7.300e+01, 7.800e+01, 8.400e+01, 8.900e+01, 3.934e+01, 4.004e+01, 4.054e+01, 4.114e+01, 4.154e+01, 4.204e+01, 4.254e+01, 4.294e+01, 4.334e+01, 4.374e+01, 4.414e+01, 4.454e+01, 4.494e+01, 4.534e+01, 4.564e+01, 4.604e+01, 4.644e+01, 4.684e+01, 4.714e+01, 4.754e+01, 4.794e+01, 4.824e+01, 4.864e+01, 4.904e+01, 4.944e+01, 4.984e+01, 5.014e+01, 5.054e+01, 5.094e+01, 5.134e+01, 5.174e+01, 5.214e+01, 5.264e+01, 5.304e+01, 5.344e+01, 5.394e+01, 5.444e+01, 5.494e+01, 5.544e+01, 5.604e+01, 5.674e+01, 5.764e+01],
[1.960e+02, 3.600e+01, 2.360e+02, 7.600e+01, 2.760e+02, 1.160e+02, 3.160e+02, 1.560e+02, 3.560e+02, 1.960e+02, 3.600e+01, 2.360e+02, 7.600e+01, 2.760e+02, 1.160e+02, 3.160e+02, 6.500e+00, 3.400e+00, 3.588e+02, 2.500e+00, 3.594e+02, 3.509e+02, 5.000e-01, 6.900e+00, 1.090e+01, 3.478e+02, 1.250e+01, 1.050e+01, 7.300e+00, 2.700e+00, 3.571e+02, 3.507e+02, 1.060e+01, 3.200e+00, 3.556e+02, 3.480e+02, 7.300e+00, 3.597e+02, 3.527e+02, 1.260e+01, 6.600e+00, 1.200e+00, 3.570e+02, 3.538e+02, 3.520e+02, 3.516e+02, 3.528e+02, 3.560e+02, 1.200e+00, 8.800e+00, 3.567e+02, 1.030e+01, 6.800e+00, 8.300e+00, 3.583e+02, 3.581e+02, 3.568e+02, 3.589e+02],
[3.580e-04, 6.100e-04, 3.220e-04, 4.850e-04, 4.360e-04, 2.910e-04, 1.120e-03, 2.320e-04, 4.300e-03, 2.680e-04, 1.700e-03, 3.790e-04, 7.460e-04, 8.190e-04, 1.030e-03, 3.650e-03, 3.050e-03, 3.240e-03, 3.340e-03, 3.410e-03, 3.490e-03, 3.290e-03, 3.630e-03, 3.510e-03, 3.320e-03, 3.270e-03, 3.280e-03, 3.470e-03, 3.720e-03, 3.960e-03, 3.980e-03, 3.700e-03, 3.630e-03, 4.100e-03, 4.080e-03, 3.600e-03, 3.990e-03, 4.530e-03, 4.040e-03, 3.630e-03, 4.130e-03, 4.370e-03, 4.340e-03, 4.210e-03, 4.100e-03, 4.090e-03, 4.190e-03, 4.380e-03, 4.460e-03, 4.080e-03, 4.420e-03, 3.960e-03, 4.230e-03, 4.120e-03, 4.440e-03, 4.420e-03, 4.370e-03, 4.380e-03]]
rad = np.radians(data[1])
azm = data[0]
z = data[2]
plt.subplot(projection="polar")
plt.scatter(rad, azm, c=z, cmap='coolwarm')
plt.colorbar()
plt.show()
Creating such a scatter plot with your real data gives an idea how it looks like. You might want to choose a different colormap, depending on what you want to convey. You also can choose a smaller dot size (for example plt.scatter(rad, azm, c=z, cmap='plasma', s=1, ec='none')) if there would be too many points.
A simple way to create a filled image from non-gridded data uses tricontourf with 256 colors (it looks quite dull with the given data, so I didn't add an example plot):
plt.subplot(projection="polar")
plt.tricontourf(rad, azm, z, levels=256, cmap='coolwarm')
I am trying to interpolate a curve to a set of (x,y) points using SciPy's interpolate.splprep method, using the procedure followed in this StackOverflow answer. My code (with the data) is given below. Please excuse me for using this large dataset, as the code works perfectly fine on a different dataset. Kindly scroll to the bottom to see the implemetation.
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
# -----------------------------------------------------------------------------
# Data
xp=np.array([ -1.19824526e-01, -1.19795807e-01, -1.22298912e-01,
-1.24784611e-01, -1.27233423e-01, -1.27048456e-01,
-1.29424259e-01, -1.31781573e-01, -1.34102825e-01,
-1.36386619e-01, -1.41324999e-01, -1.43569618e-01,
-1.48471481e-01, -1.53300646e-01, -1.55387133e-01,
-1.57436481e-01, -1.53938796e-01, -1.58562951e-01,
-1.53139517e-01, -1.50456275e-01, -1.49637920e-01,
-1.48774455e-01, -1.47843528e-01, -1.44278335e-01,
-1.43299274e-01, -1.39716798e-01, -1.36111285e-01,
-1.32534352e-01, -1.28982866e-01, -1.25433151e-01,
-1.21912263e-01, -1.16106245e-01, -1.12701128e-01,
-1.09303316e-01, -1.05947571e-01, -1.00467194e-01,
-9.72083398e-02, -9.39822094e-02, -9.08033710e-02,
-8.96420533e-02, -8.65053261e-02, -8.34162875e-02,
-8.03788778e-02, -7.73929193e-02, -7.62032638e-02,
-7.32655732e-02, -7.03760465e-02, -6.91826390e-02,
-6.63378816e-02, -6.35537275e-02, -6.08302060e-02,
-5.96426925e-02, -5.69864087e-02, -5.43931715e-02,
-5.18641746e-02, -4.93958173e-02, -4.82415854e-02,
-4.58486281e-02, -4.35196817e-02, -4.01162919e-02,
-3.79466513e-02, -3.48161871e-02, -3.18596693e-02,
-2.90650417e-02, -2.64251761e-02, -2.31429101e-02,
-1.94312163e-02, -1.73997964e-02, -1.55068323e-02,
-1.43163160e-02, -1.31800087e-02, -1.20987991e-02,
-1.10708190e-02, -1.05380016e-02, -9.58116017e-03,
-9.06399242e-03, -8.54450012e-03, -7.67847396e-03,
-7.17608354e-03, -6.67181154e-03, -5.89474349e-03,
-5.40878144e-03, -4.92121197e-03, -4.43202070e-03,
-3.94148294e-03, -3.44986011e-03, -2.82410814e-03,
-2.35269319e-03, -1.88058008e-03, -1.47393691e-03,
-9.78376399e-04, -4.82633521e-04, 1.33099164e-05,
5.09212801e-04, 1.05098855e-03, 1.56929991e-03,
2.08706303e-03, 2.72055571e-03, 3.26012954e-03,
3.79870854e-03, 4.33573131e-03, 4.87172652e-03,
5.40640816e-03, 5.93914581e-03, 6.47004490e-03,
6.99921852e-03, 7.52610639e-03, 7.70592714e-03,
8.20559501e-03, 8.70268809e-03, 9.19766855e-03,
9.68963219e-03, 1.01781695e-02, 1.01960805e-02,
1.06577199e-02, 1.11156340e-02, 1.15703286e-02,
1.20215921e-02, 1.24693015e-02, 1.29129042e-02,
1.33526781e-02, 1.37884367e-02, 1.42204360e-02,
1.46473802e-02, 1.50699789e-02, 1.54884533e-02,
1.59020551e-02, 1.63103362e-02, 8.12110387e-02,
7.80794051e-02, 1.67140103e-02, 8.31537241e-02,
7.99472912e-02, 7.99472912e-02, 7.67983984e-02,
1.71128723e-02, 8.50656342e-02, 8.17851028e-02,
7.85638577e-02, 7.53861405e-02, 1.75061328e-02,
8.19411806e-02, 7.38391281e-02, 1.78939640e-02,
8.70866930e-02, 8.36940292e-02, 8.03586974e-02,
7.70534244e-02, 7.70534244e-02, 7.38013540e-02,
7.38013540e-02, 7.06147796e-02, 1.82766038e-02,
8.54279559e-02, 8.20231372e-02, 7.53294330e-02,
7.20765174e-02, 1.86539411e-02, 8.36524496e-02,
7.85095832e-02, 7.51592888e-02, 7.18792721e-02,
1.90250409e-02, 7.82997201e-02, 7.49183992e-02,
7.49183992e-02, 7.16144248e-02, 7.16144248e-02,
6.83771846e-02, 1.93904576e-02, 7.46192919e-02,
7.12865685e-02, 7.12865685e-02, 6.80175748e-02,
1.97501330e-02, 7.42568965e-02, 7.08996495e-02,
7.08996495e-02, 6.75887344e-02, 2.01042729e-02,
7.38173451e-02, 6.70923613e-02, 2.13903228e-02,
7.50479910e-02, 6.82108239e-02, 5.69753762e-02,
5.24303656e-02, 5.24303656e-02, 4.52683211e-02,
4.52683211e-02, 4.25493203e-02, 2.17470907e-02,
7.45062992e-02, 6.76173090e-02, 6.76173090e-02,
6.42925100e-02, 6.42925100e-02, 5.94649095e-02,
5.94649095e-02, 3.92303424e-02, 2.20977481e-02,
7.21341379e-02, 3.72338037e-02, 2.24415025e-02,
7.14448972e-02, 3.40025442e-02, 2.27777176e-02,
7.07064856e-02, 3.57533680e-02, 2.41421550e-02,
6.81719132e-02, 3.62534788e-02, 2.44798556e-02,
6.56110398e-02, 3.80586628e-02, 3.29287629e-02,
2.93070471e-02, 2.48093588e-02, 6.13326924e-02,
3.85518913e-02, 3.46206958e-02, 2.85091877e-02,
2.51312268e-02, 5.38330011e-02, 3.76841669e-02,
3.50540735e-02, 2.77018960e-02, 2.65615352e-02,
5.28838088e-02, 3.81396763e-02, 3.54777506e-02,
2.80364970e-02, 2.68822682e-02, 5.03377702e-02,
3.85814254e-02, 3.58887890e-02, 4.93316503e-02,
4.04098395e-02, 3.62892096e-02, 4.67615526e-02,
4.22828625e-02, 3.80435955e-02, 3.84376145e-02,
4.02332775e-02, 4.06156847e-02, 4.24553741e-02,
4.43352031e-02, 4.47040511e-02, 4.66233682e-02,
4.69790035e-02, 4.89341212e-02, 5.09256192e-02,
5.12584867e-02, 5.32790231e-02, 5.35890744e-02,
5.38831411e-02, 5.41625645e-02, 5.44267004e-02,
5.46700348e-02, 5.48984863e-02, 5.51117932e-02,
5.53082440e-02, 5.54849716e-02, 5.56464539e-02,
5.57928396e-02, 5.59201893e-02, 5.60294455e-02,
5.61233441e-02, 5.62020138e-02, 5.62604489e-02,
5.63017253e-02, 5.63275468e-02, 5.63341408e-02,
5.63226424e-02, 5.62957310e-02, 5.62533699e-02,
5.61937444e-02, 5.61140110e-02, 5.60191106e-02,
5.59087917e-02, 5.57801898e-02, 5.56328560e-02,
5.54704141e-02, 5.70775198e-02, 5.68728844e-02,
5.66515897e-02, 5.64149230e-02, 5.61622287e-02,
5.76630266e-02, 5.73643873e-02, 5.70502787e-02,
5.67190716e-02, 5.63668473e-02, 5.59997391e-02,
5.73489998e-02, 5.69355151e-02, 5.65029189e-02,
5.77751241e-02, 5.72977910e-02, 5.67990710e-02,
5.79863269e-02, 5.74393835e-02, 5.68773454e-02,
5.62926261e-02, 5.56922722e-02, 5.50771272e-02,
5.44454686e-02, 5.37935810e-02, 5.31273003e-02,
5.24468411e-02, 5.17483760e-02, 5.10330229e-02,
5.03036776e-02, 4.95607328e-02, 4.87997085e-02,
4.80238054e-02, 4.72347342e-02, 4.64331616e-02,
4.56132865e-02, 4.47805574e-02, 4.39358955e-02,
4.30782240e-02, 4.22044750e-02, 4.01052073e-02,
3.92354976e-02, 3.83523540e-02, 3.74567873e-02,
3.65508593e-02, 3.45751478e-02, 3.36740998e-02,
3.27625023e-02, 3.18417381e-02, 3.09129121e-02,
2.90665673e-02, 2.81454989e-02, 2.72171846e-02,
2.62807950e-02, 2.53342284e-02, 2.43816409e-02,
2.34221736e-02, 2.24541496e-02, 2.08179757e-02,
1.98678098e-02, 1.89113740e-02, 1.79488243e-02,
1.69806146e-02, 1.65158032e-02, 1.55075714e-02,
1.44932106e-02, 1.34746855e-02, 1.24525920e-02,
1.14268067e-02, 1.03968750e-02, 9.36414487e-03,
8.58823755e-03, 7.51804527e-03, 6.44485601e-03,
5.37002690e-03, 4.29398700e-03, 3.31511044e-03,
2.20302298e-03, 1.09069996e-03, -2.27320426e-05,
-1.16892664e-03, -2.31490869e-03, -3.46060569e-03,
-4.74178052e-03, -5.91852523e-03, -7.09360822e-03,
-8.26683115e-03, -9.43736653e-03, -1.06042682e-02,
-1.17686419e-02, -1.33107457e-02, -1.45010352e-02,
-1.56869180e-02, -1.68693838e-02, -1.80464175e-02,
-1.97732638e-02, -2.09722818e-02, -2.21650612e-02,
-2.40185758e-02, -2.52303300e-02, -2.71803154e-02,
-2.84115598e-02, -3.04489552e-02, -3.16936647e-02,
-3.29299358e-02, -3.50861051e-02, -3.63332401e-02,
-3.85745058e-02, -3.98348648e-02, -4.21660006e-02,
-4.34302610e-02, -4.46836493e-02, -4.59254575e-02,
-4.71530952e-02, -4.96209305e-02, -4.95594200e-02,
-5.07435074e-02, -5.19101301e-02, -5.16977894e-02,
-5.14280802e-02, -5.11057669e-02, -5.07251169e-02,
-5.16985297e-02, -5.12126585e-02, -5.06852098e-02,
-5.15589749e-02, -5.09397027e-02, -5.17615499e-02,
-5.10672514e-02, -5.18313966e-02, -5.25816754e-02,
-5.33179227e-02, -5.40360028e-02, -5.47358953e-02,
-5.54213064e-02, -5.77400978e-02, -5.84092053e-02,
-5.90603644e-02, -6.14284845e-02, -6.38379284e-02,
-6.62872262e-02, -6.69166162e-02, -6.93865431e-02,
-7.18947674e-02, -7.44284962e-02, -7.69969804e-02,
-7.96063191e-02, -8.01834105e-02, -8.28053535e-02,
-8.54623715e-02, -8.59961071e-02, -8.86660185e-02,
-8.91520913e-02, -9.18335218e-02, -9.45402708e-02,
-9.49610563e-02, -9.76401856e-02, -1.00332460e-01,
-1.03032191e-01, -1.03358935e-01, -1.06040606e-01,
-1.06322470e-01, -1.08984284e-01, -1.09195131e-01,
-1.11833426e-01, -1.11994247e-01, -1.14596404e-01,
-1.17192554e-01, -1.17248317e-01])
yp = np.array([ -3.90948536e-05, -2.12984775e-03, -4.31095583e-03,
-6.58019633e-03, -8.93758156e-03, -1.11568100e-02,
-1.36444162e-02, -1.62222092e-02, -1.88895170e-02,
-2.16446498e-02, -2.49629308e-02, -2.79508857e-02,
-3.16029501e-02, -3.54376380e-02, -3.87881494e-02,
-4.22310942e-02, -4.41873802e-02, -4.85246067e-02,
-4.68663315e-02, -4.60459599e-02, -4.86676408e-02,
-5.12750434e-02, -5.38586293e-02, -5.54310799e-02,
-5.79452426e-02, -5.93547929e-02, -6.06497762e-02,
-6.18505946e-02, -6.29584706e-02, -6.39609234e-02,
-6.48713094e-02, -6.44090476e-02, -6.51181556e-02,
-6.57260659e-02, -6.62541381e-02, -6.52943568e-02,
-6.56184758e-02, -6.58578685e-02, -6.60229010e-02,
-6.76012689e-02, -6.76366183e-02, -6.76004442e-02,
-6.74972483e-02, -6.73282385e-02, -6.86657097e-02,
-6.83738036e-02, -6.80140059e-02, -6.92366190e-02,
-6.87491258e-02, -6.82071471e-02, -6.76134579e-02,
-6.86669494e-02, -6.79695621e-02, -6.72259327e-02,
-6.64391135e-02, -6.56069234e-02, -6.64563885e-02,
-6.55361171e-02, -6.45783892e-02, -6.18312378e-02,
-6.07850085e-02, -5.80009440e-02, -5.52383021e-02,
-5.24888121e-02, -4.97523554e-02, -4.54714570e-02,
-3.98863362e-02, -3.73592876e-02, -3.48720213e-02,
-3.37707235e-02, -3.26655171e-02, -3.15625118e-02,
-3.04616664e-02, -3.06508019e-02, -2.95344258e-02,
-2.96968330e-02, -2.98505905e-02, -2.87101259e-02,
-2.88391064e-02, -2.89597166e-02, -2.77967360e-02,
-2.78958771e-02, -2.79854740e-02, -2.80670276e-02,
-2.81405467e-02, -2.82051366e-02, -2.69913041e-02,
-2.70365186e-02, -2.70739448e-02, -2.83768113e-02,
-2.83979671e-02, -2.84108899e-02, -2.84155794e-02,
-2.84104617e-02, -2.96993141e-02, -2.96767995e-02,
-2.96453017e-02, -3.09305120e-02, -3.08782748e-02,
-3.08172540e-02, -3.07460634e-02, -3.06652277e-02,
-3.05756546e-02, -3.04773301e-02, -3.03684498e-02,
-3.02505329e-02, -3.01240628e-02, -2.87032761e-02,
-2.85638294e-02, -2.84161924e-02, -2.82602014e-02,
-2.80957411e-02, -2.79220043e-02, -2.65224371e-02,
-2.63408455e-02, -2.61506690e-02, -2.59523304e-02,
-2.57465736e-02, -2.55333569e-02, -2.53114227e-02,
-2.50819674e-02, -2.48453976e-02, -2.46014650e-02,
-2.43490672e-02, -2.40896946e-02, -2.38232320e-02,
-2.35495727e-02, -2.32681400e-02, -1.11708561e-01,
-1.07398522e-01, -2.29799277e-02, -1.10281290e-01,
-1.06025945e-01, -1.06025945e-01, -1.01847844e-01,
-2.26850806e-02, -1.08812919e-01, -1.04614895e-01,
-1.00492396e-01, -9.64256156e-02, -2.23830803e-02,
-1.01124594e-01, -9.11212826e-02, -2.20738630e-02,
-1.03723227e-01, -9.96804013e-02, -9.57062055e-02,
-9.17682599e-02, -9.17682599e-02, -8.78935733e-02,
-8.78935733e-02, -8.40962884e-02, -2.17583603e-02,
-9.82127298e-02, -9.42965108e-02, -8.65980524e-02,
-8.28570139e-02, -2.14365508e-02, -9.28460674e-02,
-8.71354106e-02, -8.34157663e-02, -7.97743543e-02,
-2.11075333e-02, -8.39100274e-02, -8.02849723e-02,
-8.02849723e-02, -7.67428202e-02, -7.67428202e-02,
-7.32724167e-02, -2.07721464e-02, -7.72159766e-02,
-7.37663681e-02, -7.37663681e-02, -7.03828404e-02,
-2.04308432e-02, -7.42042591e-02, -7.08482147e-02,
-7.08482147e-02, -6.75385453e-02, -2.00834820e-02,
-7.12338454e-02, -6.47417418e-02, -2.06352744e-02,
-6.99333169e-02, -6.35600774e-02, -5.30876202e-02,
-4.88515872e-02, -4.88515872e-02, -4.21763073e-02,
-4.21763073e-02, -3.96425097e-02, -2.02588101e-02,
-6.70368116e-02, -6.08364913e-02, -6.08364913e-02,
-5.78440553e-02, -5.78440553e-02, -5.34994049e-02,
-5.34994049e-02, -3.52908904e-02, -1.98763502e-02,
-6.26583213e-02, -3.23368135e-02, -1.94880238e-02,
-5.99037138e-02, -2.85040222e-02, -1.90931928e-02,
-5.72132575e-02, -2.89247783e-02, -1.95297821e-02,
-5.32198482e-02, -2.82971986e-02, -1.91058177e-02,
-4.94013681e-02, -2.86515116e-02, -2.47888430e-02,
-2.20618305e-02, -1.86758942e-02, -4.45232330e-02,
-2.79827472e-02, -2.51286391e-02, -2.06919011e-02,
-1.82397645e-02, -3.76607947e-02, -2.63609122e-02,
-2.45208701e-02, -1.93767971e-02, -1.85788804e-02,
-3.56379420e-02, -2.56998805e-02, -2.39058698e-02,
-1.88908564e-02, -1.81130913e-02, -3.26595065e-02,
-2.50304222e-02, -2.32829732e-02, -3.07966353e-02,
-2.52257065e-02, -2.26527986e-02, -2.80693713e-02,
-2.53799880e-02, -2.28350066e-02, -2.21686432e-02,
-2.22782703e-02, -2.15723084e-02, -2.16081542e-02,
-2.15998200e-02, -2.08220272e-02, -2.07341864e-02,
-1.99180705e-02, -1.97463091e-02, -1.95241512e-02,
-1.86330762e-02, -1.83210810e-02, -1.73881714e-02,
-1.64501676e-02, -1.55073488e-02, -1.45603397e-02,
-1.36076891e-02, -1.26514336e-02, -1.16918550e-02,
-1.07281971e-02, -9.76103257e-03, -8.79150351e-03,
-7.81935696e-03, -6.84417527e-03, -5.86703766e-03,
-4.88857954e-03, -3.90851347e-03, -2.92690669e-03,
-1.94445885e-03, -9.62077293e-04, 2.10973681e-05,
1.00443470e-03, 1.98670872e-03, 2.96920518e-03,
3.95065293e-03, 4.93054490e-03, 5.90896238e-03,
6.88594418e-03, 7.86095305e-03, 8.83291761e-03,
9.80227952e-03, 1.11168744e-02, 1.21109612e-02,
1.31014370e-02, 1.40884671e-02, 1.50714343e-02,
1.65579859e-02, 1.75619959e-02, 1.85609524e-02,
1.95539892e-02, 2.05406220e-02, 2.15208623e-02,
2.31958067e-02, 2.41936890e-02, 2.51825785e-02,
2.69676402e-02, 2.79735240e-02, 2.89676199e-02,
3.08600313e-02, 3.18685118e-02, 3.28673845e-02,
3.38531747e-02, 3.48305552e-02, 3.57981735e-02,
3.67545357e-02, 3.76978426e-02, 3.86308181e-02,
3.95533112e-02, 4.04626970e-02, 4.13583593e-02,
4.22429533e-02, 4.31163338e-02, 4.39732984e-02,
4.48174616e-02, 4.56497573e-02, 4.64690781e-02,
4.72699006e-02, 4.80584575e-02, 4.88339015e-02,
4.95941309e-02, 5.03364921e-02, 4.95646923e-02,
5.02584615e-02, 5.09357803e-02, 5.15956682e-02,
5.22416815e-02, 5.13017754e-02, 5.18954788e-02,
5.24741267e-02, 5.30389590e-02, 5.35886852e-02,
5.24828002e-02, 5.29815950e-02, 5.34658214e-02,
5.39333680e-02, 5.43819816e-02, 5.48154596e-02,
5.52339801e-02, 5.56342267e-02, 5.42908141e-02,
5.46458325e-02, 5.49864909e-02, 5.53070690e-02,
5.56106186e-02, 5.76746395e-02, 5.79561804e-02,
5.82151857e-02, 5.84584712e-02, 5.86858866e-02,
5.88950787e-02, 5.90831689e-02, 5.92552324e-02,
6.12619766e-02, 6.14026109e-02, 6.15224608e-02,
6.16256880e-02, 6.17123394e-02, 6.36720486e-02,
6.37186812e-02, 6.37481408e-02, 6.56861133e-02,
6.56722393e-02, 6.56407664e-02, 6.55917721e-02,
6.74743714e-02, 6.73786194e-02, 6.72646677e-02,
6.71325153e-02, 6.69773741e-02, 6.68003322e-02,
6.66053297e-02, 6.83473413e-02, 6.81027202e-02,
6.78376164e-02, 6.75542903e-02, 6.72524243e-02,
6.88634515e-02, 6.85066915e-02, 6.81318613e-02,
6.96716731e-02, 6.92387957e-02, 7.07292209e-02,
7.02467261e-02, 7.16584645e-02, 7.11134550e-02,
7.05499862e-02, 7.18681370e-02, 7.12419450e-02,
7.24822144e-02, 7.17989089e-02, 7.29694293e-02,
7.22180480e-02, 7.14476517e-02, 7.06588875e-02,
6.98486903e-02, 7.08078412e-02, 6.81567317e-02,
6.72843393e-02, 6.63881936e-02, 6.37899997e-02,
6.12404950e-02, 5.87433383e-02, 5.62902969e-02,
5.53950962e-02, 5.29895052e-02, 5.06437557e-02,
4.97490264e-02, 4.74631181e-02, 4.65678359e-02,
4.43551128e-02, 4.34554011e-02, 4.25440351e-02,
4.16213883e-02, 4.06842153e-02, 3.97338457e-02,
3.87727819e-02, 3.89122376e-02, 3.78978623e-02,
3.68719281e-02, 3.68766567e-02, 3.68230044e-02,
3.67095055e-02, 3.55465346e-02, 3.53200609e-02,
3.50311849e-02, 3.46717730e-02, 3.42461153e-02,
3.37555022e-02, 3.23610029e-02, 3.17505933e-02,
3.10701527e-02, 2.95754797e-02, 2.87735213e-02,
2.72210019e-02, 2.62970023e-02, 2.52956273e-02,
2.36404433e-02, 2.25053642e-02, 2.12889860e-02,
1.99902757e-02, 1.81872330e-02, 1.67574555e-02,
1.49054892e-02, 1.33429656e-02, 1.14391250e-02,
9.74643800e-03, 7.79267351e-03, 5.96714375e-03,
4.05355227e-03, 2.00672241e-03])
# -----------------------------------------------------------------------------
# Use scipy to interpolate.
xp = np.r_[xp, xp[0]]
yp = np.r_[yp, yp[0]]
tck, u = interpolate.splprep([xp, yp], s=0, k=1, per=True)
xi, yi = interpolate.splev(np.linspace(0, 1, 1000), tck)
# -----------------------------------------------------------------------------
# Plot result
fig = plt.figure()
ax = plt.subplot(111)
ax.plot(xp, yp, '.', markersize=2)
ax.plot(xi, yi, alpha=0.5)
plt.show()
I get the following error on one machine (MacOS),
---> tck, u = interpolate.splprep([xp, yp], s=0, k=1, per=True)
SystemError: <built-in function _parcur> returned NULL without setting an error
And this error on another machine (Ubuntu),
----> tck, u = interpolate.splprep([xp, yp], s=0, k=1, per=True)
ValueError: Invalid inputs.
interpolate.splprep uses the FORTRAN parcur routine from FITPACK (from the documentation).
My questions are -
Why does the code work for different datasets? e.g. xp = np.array([0.1, 0.2, 0.3, 0.4]) yp = np.array([-0.1, -0.3, -0.4, 0.2]) and not for this particular one? What does the error mean?
How can I get this to work? (Using this method or any other method) i.e. either interpolate a curve or filter the outliers ...
Out of curiosity, why is the error machine (and OS) dependent?
This is how the data looks when plotted, I think you can guess which curve I'd like to interpolate to (and which outliers I'd like to remove, if possible)
Fitpack has a fit if it two consecutive inputs are identical. The error happens deep enough that it depends on how the libraries were compiled and linked, hence the assortment of errors.
For example, xp[147:149], yp[147:149] (and several others):
(array([ 0.07705342, 0.07705342]), array([-0.09176826, -0.09176826]))
These are okay:
okay = np.where(np.abs(np.diff(xp)) + np.abs(np.diff(yp)) > 0)
xp = np.r_[xp[okay], xp[-1], xp[0]]
yp = np.r_[yp[okay], yp[-1], yp[0]]
# the rest of your code
I add the last point back because the output of diff is always one element shorter, so the last one needs to be included manually. (And then of course, you put the 0th point again for periodicity)
Cutting off the weird part
This is my attempt to cut off the weird extruding part of the dataset. It uses a Gaussian filter from ndimage. The original points xp, yp are kept this time; the filtered ones are xn, yn.
jump = np.sqrt(np.diff(xp)**2 + np.diff(yp)**2)
smooth_jump = ndimage.gaussian_filter1d(jump, 5, mode='wrap') # window of size 5 is arbitrary
limit = 2*np.median(smooth_jump) # factor 2 is arbitrary
xn, yn = xp[:-1], yp[:-1]
xn = xn[(jump > 0) & (smooth_jump < limit)]
yn = yn[(jump > 0) & (smooth_jump < limit)]
So, we remove not only duplicate points but also the points where the values jump around too much. The rest goes as before, interpolation is built out of xn, yn now. I plot original points for comparison with the new (red) curve):
ax.plot(xp, yp, 'o', markersize=2)
ax.plot(xi, yi, 'r', alpha=0.5)