Show self loops with networkx - Python - python

I'm using the DiGraph class from networkx, which, by the docs, should allow self loops. However, when plotting with Matplotlib, I just cannot see any self loop, no matter if
print(G.nodes_with_selfloops())
returns a list of nodes with self loops.
I'm wondering how to display these self loops.
I'm using these functions to draw:
nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels)
nx.draw_networkx(G,pos,font_color='k',node_size=500, edge_color='b', alpha=0.5)

I have faced the same issue when trying to draw a chord diagram using networkx. On an older version of networkx (2.5) self-loops were drawn with one dot behind the node (which means you don't see them at all). On the newer version (2.6.2), self-loops are drawn in the same direction as on the image below
Self-loops in the networkx 2.6.2
If this is enough for you, try to update networkx. Looks like this problem is solved. At least, the documentation has some info about it
However, if this is not enough for you (as it was for me), you can write a custom code to draw self-loops nicer. I created a repository for that task. It allows to draw self-loop with different directions, looking away from the center:
Self-loops with my code
Here is briefly the idea behind it:
You know the start and the end coordinates of the loop. These are just the coordinates of your node
You need 2 more points to draw a self-loop with Bézier curve. You want them to be further away from the center, than the node of the graph. You also want them to be further from the node in the orthogonal direction to the vector from the center to the node
If this sounds too complicated, I hope the image makes it clear:
Visualization of anchors
When we obtained the anchors, we can draw a Bézier curve through them. This is how it looks:
Self-loops
Here is code:
from typing import Optional
import matplotlib.pyplot as plt
from matplotlib.path import Path as MplPath # To avoid collisions with pathlib.Path
import matplotlib.patches as patches
import networkx as nx
import numpy as np
# Some useful functions
def normalize_vector(vector: np.array, normalize_to: float) -> np.array:
"""Make `vector` norm equal to `normalize_to`
vector: np.array
Vector with 2 coordinates
normalize_to: float
A norm of the new vector
Returns
-------
Vector with the same direction, but length normalized to `normalize_to`
"""
vector_norm = np.linalg.norm(vector)
return vector * normalize_to / vector_norm
def orthogonal_vector(point: np.array, width: float, normalize_to: Optional[float] = None) -> np.array:
"""Get orthogonal vector to a `point`
point: np.array
Vector with x and y coordinates of a point
width: float
Distance of the x-coordinate of the new vector from the `point` (in orthogonal direction)
normalize_to: Optional[float] = None
If a number is provided, normalize a new vector length to this number
Returns
-------
Array with x and y coordinates of the vector, which is orthogonal to the vector from (0, 0) to `point`
"""
EPSILON = 0.000001
x = width
y = -x * point[0] / (point[1] + EPSILON)
ort_vector = np.array([x, y])
if normalize_to is not None:
ort_vector = normalize_vector(ort_vector, normalize_to)
return ort_vector
def draw_self_loop(
point: np.array,
ax: Optional[plt.Axes] = None,
padding: float = 1.5,
width: float = 0.3,
plot_size: int = 10,
linewidth = 0.2,
color: str = "pink",
alpha: float = 0.5
) -> plt.Axes:
"""Draw a loop from `point` to itself
!Important! By "center" we assume a (0, 0) point. If your data is centered around a different points,
it is strongly recommended to center it around zero. Otherwise, you will probably get ugly plots
Parameters
----------
point: np.array
1D array with 2 coordinates of the point. Loop will be drawn from and to these coordinates.
padding: float = 1.5
Controls how the distance of the loop from the center. If `padding` > 1, the loop will be
from the outside of the `point`. If `padding` < 1, the loop will be closer to the center
width: float = 0.3
Controls the width of the loop
linewidth: float = 0.2
Width of the line of the loop
ax: Optional[matplotlib.pyplot.Axes]:
Axis on which to draw a plot. If None, a new Axis is generated
plot_size: int = 7
Size of the plot sides in inches. Ignored if `ax` is provided
color: str = "pink"
Color of the arrow
alpha: float = 0.5
Opacity of the edge
Returns
-------
Matplotlib axes with the self-loop drawn
"""
if ax is None:
fig, ax = plt.subplots(figsize=(plot_size, plot_size))
point_with_padding = padding * point
ort_vector = orthogonal_vector(point, width, normalize_to=width)
first_anchor = ort_vector + point_with_padding
second_anchor = -ort_vector + point_with_padding
verts = [point, first_anchor, second_anchor, point]
codes = [MplPath.MOVETO, MplPath.CURVE4, MplPath.CURVE4, MplPath.CURVE4]
path = MplPath(verts, codes)
patch = patches.FancyArrowPatch(
path=path,
facecolor='none',
lw=linewidth,
arrowstyle="-|>",
color=color,
alpha=alpha,
mutation_scale=30 # arrowsize in draw_networkx_edges()
)
ax.add_patch(patch)
return ax
Code example with drawing a plot:
fig, ax = plt.subplots(figsize=(6, 6))
graph = nx.DiGraph(
np.array([
[1, 1, 1, 1, 1],
[1, 0, 1, 0, 0],
[1, 1, 1, 0, 1],
[0, 0, 1, 0, 1],
[1, 1, 1, 1, 1]
])
)
pos = nx.circular_layout(graph, center=(0, 0))
nx.draw_networkx_nodes(graph, pos, ax=ax)
nx.draw_networkx_edges(graph, pos, ax=ax)
for node in graph.nodes:
if (node, node) in graph.edges:
draw_self_loop(point=pos[node], ax=ax, color="k", alpha=1, linewidth=1)
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
Result: chord diagram
You can find more examples and functions to draw a beautiful chord diagram in my repository

https://networkx.github.io/documentation/networkx-1.10/reference/drawing.html
In the future, graph visualization functionality may be removed from
NetworkX or only available as an add-on package.
We highly recommend that people visualize their graphs with tools
dedicated to that task.
Link above provides many alternatives to built-in visualization. Do consider alternatives they provide to save yourself A LOT of time down the road.
Personally I use cytoscape, which accepts files in .graphml format. Exporting your graph to .graphml is very easy:
nx.write_graphml(graph, path_to_file)

Related

How to Create a Boxplot / Group Boxplot from [Min ,Q1 ,Q2 ,Q3 ,Max] in Python? [duplicate]

From what I can see, boxplot() method expects a sequence of raw values (numbers) as input, from which it then computes percentiles to draw the boxplot(s).
I would like to have a method by which I could pass in the percentiles and get the corresponding boxplot.
For example:
Assume that I have run several benchmarks and for each benchmark I've measured latencies ( floating point values ). Now additionally, I have precomputed the percentiles for these values.
Hence for each benchmark, I have the 25th, 50th, 75th percentile along with the min and max.
Now given these data, I would like to draw the box plots for the benchmarks.
As of 2020, there is a better method than the one in the accepted answer.
The matplotlib.axes.Axes class provides a bxp method, which can be used to draw the boxes and whiskers based on the percentile values. Raw data is only needed for the outliers, and that is optional.
Example:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
boxes = [
{
'label' : "Male height",
'whislo': 162.6, # Bottom whisker position
'q1' : 170.2, # First quartile (25th percentile)
'med' : 175.7, # Median (50th percentile)
'q3' : 180.4, # Third quartile (75th percentile)
'whishi': 187.8, # Top whisker position
'fliers': [] # Outliers
}
]
ax.bxp(boxes, showfliers=False)
ax.set_ylabel("cm")
plt.savefig("boxplot.png")
plt.close()
This produces the following image:
To draw the box plot using just the percentile values and the outliers ( if any ) I made a customized_box_plot function that basically modifies attributes in a basic box plot ( generated from a tiny sample data ) to make it fit according to your percentile values.
The customized_box_plot function
def customized_box_plot(percentiles, axes, redraw = True, *args, **kwargs):
"""
Generates a customized boxplot based on the given percentile values
"""
box_plot = axes.boxplot([[-9, -4, 2, 4, 9],]*n_box, *args, **kwargs)
# Creates len(percentiles) no of box plots
min_y, max_y = float('inf'), -float('inf')
for box_no, (q1_start,
q2_start,
q3_start,
q4_start,
q4_end,
fliers_xy) in enumerate(percentiles):
# Lower cap
box_plot['caps'][2*box_no].set_ydata([q1_start, q1_start])
# xdata is determined by the width of the box plot
# Lower whiskers
box_plot['whiskers'][2*box_no].set_ydata([q1_start, q2_start])
# Higher cap
box_plot['caps'][2*box_no + 1].set_ydata([q4_end, q4_end])
# Higher whiskers
box_plot['whiskers'][2*box_no + 1].set_ydata([q4_start, q4_end])
# Box
box_plot['boxes'][box_no].set_ydata([q2_start,
q2_start,
q4_start,
q4_start,
q2_start])
# Median
box_plot['medians'][box_no].set_ydata([q3_start, q3_start])
# Outliers
if fliers_xy is not None and len(fliers_xy[0]) != 0:
# If outliers exist
box_plot['fliers'][box_no].set(xdata = fliers_xy[0],
ydata = fliers_xy[1])
min_y = min(q1_start, min_y, fliers_xy[1].min())
max_y = max(q4_end, max_y, fliers_xy[1].max())
else:
min_y = min(q1_start, min_y)
max_y = max(q4_end, max_y)
# The y axis is rescaled to fit the new box plot completely with 10%
# of the maximum value at both ends
axes.set_ylim([min_y*1.1, max_y*1.1])
# If redraw is set to true, the canvas is updated.
if redraw:
ax.figure.canvas.draw()
return box_plot
USAGE
Using inverse logic ( code at the very end ) I extracted the percentile values from this example
>>> percentiles
(-1.0597368367634488, 0.3977683984966961, 1.0298955252405229, 1.6693981537742526, 3.4951447843464449)
(-0.90494930553559483, 0.36916539612108634, 1.0303658700697103, 1.6874542731392828, 3.4951447843464449)
(0.13744105279440233, 1.3300645202649739, 2.6131540656339483, 4.8763411136047647, 9.5751914834437937)
(0.22786243898199182, 1.4120860286080519, 2.637650402506837, 4.9067126578493259, 9.4660357513550899)
(0.0064696168078617741, 0.30586770128093388, 0.70774153557312702, 1.5241965711101928, 3.3092932063051976)
(0.007009744579241136, 0.28627373934008982, 0.66039691869500572, 1.4772725266672091, 3.221716765477217)
(-2.2621660374110544, 5.1901313713883352, 7.7178532139979357, 11.277744848353247, 20.155971739152388)
(-2.2621660374110544, 5.1884411864079532, 7.3357079047721054, 10.792299385806913, 18.842012119715388)
(2.5417888074435702, 5.885996170695587, 7.7271286220368598, 8.9207423361593179, 10.846938621419374)
(2.5971767318505856, 5.753551925927133, 7.6569980004033464, 8.8161056254143233, 10.846938621419374)
Note that to keep this short I haven't shown the outliers vectors which will be the 6th element of each of the percentile array.
Also note that all usual additional kwargs / args can be used since they are simply passed to the boxplot method inside it :
>>> fig, ax = plt.subplots()
>>> b = customized_box_plot(percentiles, ax, redraw=True, notch=0, sym='+', vert=1, whis=1.5)
>>> plt.show()
EXPLANATION
The boxplot method returns a dictionary mapping the components of the boxplot to the individual matplotlib.lines.Line2D instances that were created.
Quoting from the matplotlib.pyplot.boxplot documentation :
That dictionary has the following keys (assuming vertical boxplots):
boxes: the main body of the boxplot showing the quartiles and the median’s confidence intervals if enabled.
medians: horizonal lines at the median of each box.
whiskers: the vertical lines extending to the most extreme, n-outlier data points. caps: the horizontal lines at the ends of the whiskers.
fliers: points representing data that extend beyond the whiskers (outliers).
means: points or lines representing the means.
For example observe the boxplot of a tiny sample data of [-9, -4, 2, 4, 9]
>>> b = ax.boxplot([[-9, -4, 2, 4, 9],])
>>> b
{'boxes': [<matplotlib.lines.Line2D at 0x7fe1f5b21350>],
'caps': [<matplotlib.lines.Line2D at 0x7fe1f54d4e50>,
<matplotlib.lines.Line2D at 0x7fe1f54d0e50>],
'fliers': [<matplotlib.lines.Line2D at 0x7fe1f5b317d0>],
'means': [],
'medians': [<matplotlib.lines.Line2D at 0x7fe1f63549d0>],
'whiskers': [<matplotlib.lines.Line2D at 0x7fe1f5b22e10>,
<matplotlib.lines.Line2D at 0x7fe20c54a510>]}
>>> plt.show()
The matplotlib.lines.Line2D objects have two methods that I'll be using in my function extensively. set_xdata ( or set_ydata ) and get_xdata ( or get_ydata ).
Using these methods we can alter the position of the constituent lines of the base box plot to conform to your percentile values ( which is what the customized_box_plot function does ). After altering the constituent lines' position, you can redraw the canvas using figure.canvas.draw()
Summarizing the mappings from percentile to the coordinates of the various Line2D objects.
The Y Coordinates :
The max ( q4_end - end of 4th quartile ) corresponds to the top most cap Line2D object.
The min ( q1_start - start of the 1st quartile ) corresponds to the lowermost most cap Line2D object.
The median corresponds to the ( q3_start ) median Line2D object.
The 2 whiskers lie between the ends of the boxes and extreme caps ( q1_start and q2_start - lower whisker; q4_start and q4_end - upper whisker )
The box is actually an interesting n shaped line bounded by a cap at the lower portion. The extremes of the n shaped line correspond to the q2_start and the q4_start.
The X Coordinates :
The Central x coordinates ( for multiple box plots are usually 1, 2, 3... )
The library automatically calculates the bounding x coordinates based on the width specified.
INVERSE FUNCTION TO RETRIEVE THE PERCENTILES FROM THE boxplot DICT:
def get_percentiles_from_box_plots(bp):
percentiles = []
for i in range(len(bp['boxes'])):
percentiles.append((bp['caps'][2*i].get_ydata()[0],
bp['boxes'][i].get_ydata()[0],
bp['medians'][i].get_ydata()[0],
bp['boxes'][i].get_ydata()[2],
bp['caps'][2*i + 1].get_ydata()[0],
(bp['fliers'][i].get_xdata(),
bp['fliers'][i].get_ydata())))
return percentiles
NOTE:
The reason why I did not make a completely custom boxplot method is because, there are many features offered by the inbuilt box plot that cannot be fully reproduced.
Also excuse me if I may have unnecessarily explained something that may have been too obvious.
Here is an updated version of this useful routine. Setting the vertices directly appears to work for both filled boxes (patchArtist=True) and unfilled ones.
def customized_box_plot(percentiles, axes, redraw = True, *args, **kwargs):
"""
Generates a customized boxplot based on the given percentile values
"""
n_box = len(percentiles)
box_plot = axes.boxplot([[-9, -4, 2, 4, 9],]*n_box, *args, **kwargs)
# Creates len(percentiles) no of box plots
min_y, max_y = float('inf'), -float('inf')
for box_no, pdata in enumerate(percentiles):
if len(pdata) == 6:
(q1_start, q2_start, q3_start, q4_start, q4_end, fliers_xy) = pdata
elif len(pdata) == 5:
(q1_start, q2_start, q3_start, q4_start, q4_end) = pdata
fliers_xy = None
else:
raise ValueError("Percentile arrays for customized_box_plot must have either 5 or 6 values")
# Lower cap
box_plot['caps'][2*box_no].set_ydata([q1_start, q1_start])
# xdata is determined by the width of the box plot
# Lower whiskers
box_plot['whiskers'][2*box_no].set_ydata([q1_start, q2_start])
# Higher cap
box_plot['caps'][2*box_no + 1].set_ydata([q4_end, q4_end])
# Higher whiskers
box_plot['whiskers'][2*box_no + 1].set_ydata([q4_start, q4_end])
# Box
path = box_plot['boxes'][box_no].get_path()
path.vertices[0][1] = q2_start
path.vertices[1][1] = q2_start
path.vertices[2][1] = q4_start
path.vertices[3][1] = q4_start
path.vertices[4][1] = q2_start
# Median
box_plot['medians'][box_no].set_ydata([q3_start, q3_start])
# Outliers
if fliers_xy is not None and len(fliers_xy[0]) != 0:
# If outliers exist
box_plot['fliers'][box_no].set(xdata = fliers_xy[0],
ydata = fliers_xy[1])
min_y = min(q1_start, min_y, fliers_xy[1].min())
max_y = max(q4_end, max_y, fliers_xy[1].max())
else:
min_y = min(q1_start, min_y)
max_y = max(q4_end, max_y)
# The y axis is rescaled to fit the new box plot completely with 10%
# of the maximum value at both ends
axes.set_ylim([min_y*1.1, max_y*1.1])
# If redraw is set to true, the canvas is updated.
if redraw:
ax.figure.canvas.draw()
return box_plot
Here is a bottom-up approach where the box_plot is build up using matplotlib's vline, Rectangle, and normal plot functions
def boxplot(df, ax=None, box_width=0.2, whisker_size=20, mean_size=10, median_size = 10 , line_width=1.5, xoffset=0,
color=0):
"""Plots a boxplot from existing percentiles.
Parameters
----------
df: pandas DataFrame
ax: pandas AxesSubplot
if to plot on en existing axes
box_width: float
whisker_size: float
size of the bar at the end of each whisker
mean_size: float
size of the mean symbol
color: int or rgb(list)
If int particular color of property cycler is taken. Example of rgb: [1,0,0] (red)
Returns
-------
f, a, boxes, vlines, whisker_tips, mean, median
"""
if type(color) == int:
color = plt.rcParams['axes.prop_cycle'].by_key()['color'][color]
if ax:
a = ax
f = a.get_figure()
else:
f, a = plt.subplots()
boxes = []
vlines = []
xn = []
for row in df.iterrows():
x = row[0] + xoffset
xn.append(x)
# box
y = row[1][25]
height = row[1][75] - row[1][25]
box = plt.Rectangle((x - box_width / 2, y), box_width, height)
a.add_patch(box)
boxes.append(box)
# whiskers
y = (row[1][95] + row[1][5]) / 2
vl = a.vlines(x, row[1][5], row[1][95])
vlines.append(vl)
for b in boxes:
b.set_linewidth(line_width)
b.set_facecolor([1, 1, 1, 1])
b.set_edgecolor(color)
b.set_zorder(2)
for vl in vlines:
vl.set_color(color)
vl.set_linewidth(line_width)
vl.set_zorder(1)
whisker_tips = []
if whisker_size:
g, = a.plot(xn, df[5], ls='')
whisker_tips.append(g)
g, = a.plot(xn, df[95], ls='')
whisker_tips.append(g)
for wt in whisker_tips:
wt.set_markeredgewidth(line_width)
wt.set_color(color)
wt.set_markersize(whisker_size)
wt.set_marker('_')
mean = None
if mean_size:
g, = a.plot(xn, df['mean'], ls='')
g.set_marker('o')
g.set_markersize(mean_size)
g.set_zorder(20)
g.set_markerfacecolor('None')
g.set_markeredgewidth(line_width)
g.set_markeredgecolor(color)
mean = g
median = None
if median_size:
g, = a.plot(xn, df['median'], ls='')
g.set_marker('_')
g.set_markersize(median_size)
g.set_zorder(20)
g.set_markeredgewidth(line_width)
g.set_markeredgecolor(color)
median = g
a.set_ylim(np.nanmin(df), np.nanmax(df))
return f, a, boxes, vlines, whisker_tips, mean, median
This is how it looks in action:
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
nopts = 12
df = pd.DataFrame()
df['mean'] = np.random.random(nopts) + 7
df['median'] = np.random.random(nopts) + 7
df[5] = np.random.random(nopts) + 4
df[25] = np.random.random(nopts) + 6
df[75] = np.random.random(nopts) + 8
df[95] = np.random.random(nopts) + 10
out = boxplot(df)

How do I create a shear matrix for PyTorch's F.affine_grid & F.grid_sample?

I need to create a shear matrix that is autograd compatible, works on B,C,H,W tensors, and takes input values (possibly generated randomly) for the shear values. How can I generate the shear matrix for this?
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
# Load image
def preprocess_simple(image_name, image_size):
Loader = transforms.Compose([transforms.Resize(image_size), transforms.ToTensor()])
image = Image.open(image_name).convert('RGB')
return Loader(image).unsqueeze(0)
# Save image
def deprocess_simple(output_tensor, output_name):
output_tensor.clamp_(0, 1)
Image2PIL = transforms.ToPILImage()
image = Image2PIL(output_tensor.squeeze(0))
image.save(output_name)
def get_shear_mat(theta):
...
return shear_mat
def shear_img(x, theta, dtype):
shear_mat = get_shear_mat(theta)
grid = F.affine_grid(shear_mat , x.size()).type(dtype)
x = F.grid_sample(x, grid)
return x
# Shear tensor
test_input = # Test image
shear_values = (3,4) # Example values
sheared_tensor = shear_img(test_input, shear_values)
Say m is the shear factor, then theta = atan(1/m) is the shear angle.
You can now pick either horizontal shear or vertical shear. Here's how you implement get_shear_mat such that you can pick horizontal shear by setting ax=0 and vertical shear by setting ax=1:
def get_shear_mat(theta, ax=0):
assert ax in [0, 1]
m = 1 / torch.tan(torch.tensor(theta))
if ax == 0: # Horizontal shear
shear_mat = torch.tensor([[1, m, 0],
[0, 1, 0]])
else: # Vertical shear
shear_mat = torch.tensor([[1, 0, 0],
[m, 1, 0]])
return shear_mat
Notice that a shear mapping is just a mapping of point (x,y) in the original image to the point (x+my,y) for horizontal shear, and (x,y+mx) for vertical shear. This is exactly what we do here by defining the shear_mat as above.
An optional modification to shear_img to support the operation for a batched input in the first row. Also adding an argument - ax to shear_img to define whether we want a horizontal (ax=0) or vertical(ax=1) shear:
def shear_img(x, ax, theta, dtype):
shear_mat = get_shear_mat(theta, ax)[None, ...].type(dtype).repeat(x.shape[0], 1, 1)
grid = F.affine_grid(shear_mat , x.size()).type(dtype)
x = F.grid_sample(x.type(dtype), grid)
return x
Let's test this implementation on an image:
# Let im be a 4D tensor of shape BxCxHxW (an image or a batch of images):
dtype = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor # Set type of data
sheared_im = shear_img(im, 0, np.pi/4, dtype) #Horizontal shear by shear angle of pi/4
plt.imshow(sheared_im.squeeze(0).permute(1,2,0)/255)
plt.show()
If im is our dancing cat with a skirt:
Then our plot will be:
If we want a vertical shear:
sheared_im = shear_img(im, 1, np.pi/4, dtype) # Vertical shear by shear angle of pi/4
plt.imshow(sheared_im.squeeze(0).permute(1, 2, 0)/255)
plt.show()
We obtain:
Hooray!

Python boxplot showing means and confidence intervals

How can I create a boxplot like the one below, in Python? I want to depict means and confidence bounds only (rather than proportions of IQRs, as in matplotlib boxplot).
I don't have any version constraints, and if your answer has some package dependency that's OK too. Thanks!
Use errorbar instead. Here is a minimal example:
import matplotlib.pyplot as plt
x = [2, 4, 3]
y = [1, 3, 5]
errors = [0.5, 0.25, 0.75]
plt.figure()
plt.errorbar(x, y, xerr=errors, fmt = 'o', color = 'k')
plt.yticks((0, 1, 3, 5, 6), ('', 'x3', 'x2', 'x1',''))
Note that boxplot is not the right approach; the conf_intervals parameter only controls the placement of the notches on the boxes (and we don't want boxes anyway, let alone notched boxes). There is no way to customize the whiskers except as a function of IQR.
Thanks to America, I propose a way to automatize this kind of graph a little bit.
Below an example of code generating 20 arrays from a normal distribution with mean=0.25 and std=0.1.
I used the formula W = t * s / sqrt(n), to calculate the margin of error of the confidence interval, with t the constant from the t distribution (see scipy.stats.t), s the standard deviation and n the number of values in an array.
list_samples=list() # making a list of arrays
for i in range(20):
list.append(np.random.normal(loc=0.25, scale=0.1, size=20))
def W_array(array, conf=0.95): # function that returns W based on the array provided
t = stats.t(df = len(array) - 1).ppf((1 + conf) /2)
W = t * np.std(array, ddof=1) / np.sqrt(len(array))
return W # the error
W_list = list()
mean_list = list()
for i in range(len(list_samples)):
W_list.append(W_array(list_samples[i])) # makes a list of W for each array
mean_list.append(np.mean(list_samples[i])) # same for the means to plot
plt.errorbar(x=mean_list, y=range(len(list_samples)), xerr=W_list, fmt='o', color='k')
plt.axvline(.25, ls='--') # this is only to demonstrate that 95%
# of the 95% CI contain the actual mean
plt.yticks([])
plt.show();

Shape recognition with numpy/scipy (perhaps watershed)

My goal is to trace drawings that have a lot of separate shapes in them and to split these shapes into individual images. It is black on white. I'm quite new to numpy,opencv&co - but here is my current thought:
scan for black pixels
black pixel found -> watershed
find watershed boundary (as polygon path)
continue searching, but ignore points within the already found boundaries
I'm not very good at these kind of things, is there a better way?
First I tried to find the rectangular bounding box of the watershed results (this is more or less a collage of examples):
from numpy import *
import numpy as np
from scipy import ndimage
np.set_printoptions(threshold=np.nan)
a = np.zeros((512, 512)).astype(np.uint8) #unsigned integer type needed by watershed
y, x = np.ogrid[0:512, 0:512]
m1 = ((y-200)**2 + (x-100)**2 < 30**2)
m2 = ((y-350)**2 + (x-400)**2 < 20**2)
m3 = ((y-260)**2 + (x-200)**2 < 20**2)
a[m1+m2+m3]=1
markers = np.zeros_like(a).astype(int16)
markers[0, 0] = 1
markers[200, 100] = 2
markers[350, 400] = 3
markers[260, 200] = 4
res = ndimage.watershed_ift(a.astype(uint8), markers)
unique(res)
B = argwhere(res.astype(uint8))
(ystart, xstart), (ystop, xstop) = B.min(0), B.max(0) + 1
tr = a[ystart:ystop, xstart:xstop]
print tr
Somehow, when I use the original array (a) then argwhere seems to work, but after the watershed (res) it just outputs the complete array again.
The next step could be to find the polygon path around the shape, but the bounding box would be great for now!
Please help!
#Hooked has already answered most of your question, but I was in the middle of writing this up when he answered, so I'll post it in the hopes that it's still useful...
You're trying to jump through a few too many hoops. You don't need watershed_ift.
You use scipy.ndimage.label to differentiate separate objects in a boolean array and scipy.ndimage.find_objects to find the bounding box of each object.
Let's break things down a bit.
import numpy as np
from scipy import ndimage
import matplotlib.pyplot as plt
def draw_circle(grid, x0, y0, radius):
ny, nx = grid.shape
y, x = np.ogrid[:ny, :nx]
dist = np.hypot(x - x0, y - y0)
grid[dist < radius] = True
return grid
# Generate 3 circles...
a = np.zeros((512, 512), dtype=np.bool)
draw_circle(a, 100, 200, 30)
draw_circle(a, 400, 350, 20)
draw_circle(a, 200, 260, 20)
# Label the objects in the array.
labels, numobjects = ndimage.label(a)
# Now find their bounding boxes (This will be a tuple of slice objects)
# You can use each one to directly index your data.
# E.g. a[slices[0]] gives you the original data within the bounding box of the
# first object.
slices = ndimage.find_objects(labels)
#-- Plotting... -------------------------------------
fig, ax = plt.subplots()
ax.imshow(a)
ax.set_title('Original Data')
fig, ax = plt.subplots()
ax.imshow(labels)
ax.set_title('Labeled objects')
fig, axes = plt.subplots(ncols=numobjects)
for ax, sli in zip(axes.flat, slices):
ax.imshow(labels[sli], vmin=0, vmax=numobjects)
tpl = 'BBox:\nymin:{0.start}, ymax:{0.stop}\nxmin:{1.start}, xmax:{1.stop}'
ax.set_title(tpl.format(*sli))
fig.suptitle('Individual Objects')
plt.show()
Hopefully that makes it a bit clearer how to find the bounding boxes of the objects.
Use the ndimage library from scipy. The function label places a unique tag on each block of pixels that are within a threshold. This identifies the unique clusters (shapes). Starting with your definition of a:
from scipy import ndimage
image_threshold = .5
label_array, n_features = ndimage.label(a>image_threshold)
# Plot the resulting shapes
import pylab as plt
plt.subplot(121)
plt.imshow(a)
plt.subplot(122)
plt.imshow(label_array)
plt.show()

How do I plot a step function with Matplotlib in Python?

This should be easy but I have just started toying with matplotlib and python. I can do a line or a scatter plot but i am not sure how to do a simple step function. Any help is much appreciated.
x = 1,2,3,4
y = 0.002871972681775004, 0.00514787917410944, 0.00863476098280219, 0.012003316194034325
It seems like you want step.
E.g.
import matplotlib.pyplot as plt
x = [1,2,3,4]
y = [0.002871972681775004, 0.00514787917410944,
0.00863476098280219, 0.012003316194034325]
plt.step(x, y)
plt.show()
If you have non-uniformly spaced data points, you can use the drawstyle keyword argument for plot:
x = [1,2.5,3.5,4]
y = [0.002871972681775004, 0.00514787917410944,
0.00863476098280219, 0.012003316194034325]
plt.plot(x, y, drawstyle='steps-pre')
Also available are steps-mid and steps-post.
New in matplotlib 3.4.0
There is a new plt.stairs method to complement plt.step:
plt.stairs and the underlying StepPatch provide a cleaner interface for plotting stepwise constant functions for the common case that you know the step edges.
This supersedes many use cases of plt.step, for instance when plotting the output of np.histogram.
Check out the official matplotlib gallery for how to use plt.stairs and StepPatch.
When to use plt.step vs plt.stairs
Use the original plt.step if you have reference points. Here the steps are anchored at [1,2,3,4] and extended to the left:
plt.step(x=[1,2,3,4], y=[20,40,60,30])
Use the new plt.stairs if you have edges. The previous [1,2,3,4] step points correspond to [1,1,2,3,4] stair edges:
plt.stairs(values=[20,40,60,30], edges=[1,1,2,3,4])
Using plt.stairs with np.histogram
Since np.histogram returns edges, it works directly with plt.stairs:
data = np.random.normal(5, 3, 3000)
bins = np.linspace(0, 10, 20)
hist, edges = np.histogram(data, bins)
plt.stairs(hist, edges)
I think you want pylab.bar(x,y,width=1) or equally pyplot's bar method. if not checkout the gallery for the many styles of plots you can do. Each image comes with example code showing you how to make it using matplotlib.
Draw two lines, one at y=0, and one at y=1, cutting off at whatever x your step function is for.
e.g. if you want to step from 0 to 1 at x=2.3 and plot from x=0 to x=5:
import matplotlib.pyplot as plt
# _
# if you want the vertical line _|
plt.plot([0,2.3,2.3,5],[0,0,1,1])
#
# OR:
# _
# if you don't want the vertical line _
#plt.plot([0,2.3],[0,0],[2.3,5],[1,1])
# now change the y axis so we can actually see the line
plt.ylim(-0.1,1.1)
plt.show()
In case someone just wants to stepify some data rather than actually plot it:
def get_x_y_steps(x, y, where="post"):
if where == "post":
x_step = [x[0]] + [_x for tup in zip(x, x)[1:] for _x in tup]
y_step = [_y for tup in zip(y, y)[:-1] for _y in tup] + [y[-1]]
elif where == "pre":
x_step = [_x for tup in zip(x, x)[:-1] for _x in tup] + [x[-1]]
y_step = [y[0]] + [_y for tup in zip(y, y)[1:] for _y in tup]
return x_step, y_step

Categories