My goal for a task is to allow one button press to start two processes, both running simultaneously on different QThreads.
My code is structured like this (simplified)
class Main_Window():
# My UI stuff goes here
class worker1(QtCore.QObject):
def __init__(self):
...
def run1():
...
class worker2(QtCore.QObject):
def __init__(self):
...
def run2():
...
app = QtGui.QApplication(sys.argv)
myapp = Main_Window()
thr1 = QtCore.QThread()
thr2 = QtCore.QThread()
work1 = worker1()
work2 = worker2()
work1.moveToThread(thr1)
work2.moveToThread(thr2)
# I have a signal coming in from main thread
app.connect(myapp, QtCore.SIGNAL('start1'), work1.run1())
app.connect(myapp, QtCore.SIGNAL('start1'), work2.run2())
thr1.start()
thr2.start()
Is this kind of QThread coding incorrect if I want to setup two Qthreads?
I am getting a "Segmentation fault" when I try to start the program, but as soon as I take the second app.connect away, it runs fine.
I was wondering if anyone can tell me where I've gone wrong.
Thanks!
When you connect your signals with:
app.connect(myapp, QtCore.SIGNAL('start1'), work1.run1())
You are actually executing the run function, not just connecting it. You want to leave out the "()" or else python executes the function and tries to connect whatever it returns.
EDIT:
Two more suggestions in response to your comment saying you took out the "()".
First, I've never seen someone rename the run function when using the QtThread class and you may want to try the same code where both run1 and run2 are actually just named "run". Check out this thread for some good example:
How to use QThread correctly in pyqt with moveToThread()?
Second, can you post the actual error? Does it like anything like the one in this thread:
Is this PyQt 4 python bug or wrongly behaving code?
Related
Simply put, I want to properly implement threading in a Python GTK application. This is in order to prevent UI freezing due to functions/code taking a long time to finish running. Hence, my approach was to move all code which took a long time to run into separate functions, and run them in their separate threads as needed. This however posed a problem when trying to run the functions in sequence.
For example, take a look at the following code:
class Main(Gtk.Window):
def __init__(self):
super().__init__()
self.button = Gtk.Button(label='button')
self.add(self.button)
self.button.connect('clicked', self.main_function)
def threaded_function(self):
time.sleep(20)
print('this is a threaded function')
def first_normal_function(self):
print('this is a normal function')
def second_normal_function(self):
print('this is a normal function')
def main_function(self, widget):
self.first_normal_function()
self.threaded_function()
self.second_normal_function()
Pressing the button starts main_function which then starts 3 functions in sequence. threaded_function represents a function which would take a long time to complete. Running this as is will freeze the UI. Hence it should be threaded as such:
...
...
def main_function(self, widget):
self.first_normal_function()
thread = threading.Thread(target=self.threaded_function)
thread.daemon = True
thread.start()
self.second_normal_function()
What should happen is that the following first_normal_function should run, then threaded_function in a background thread - the UI should remain responsive as the background thread is working. Finally, second_normal_function should run, but only when threaded_function is finished.
The issue with this is that the functions will not run in sequence. The behaviour I am looking for could be achieved by using thread.join() however this freezes the UI.
So I ask, what's the proper way of doing this? This is a general case, however it concerns the general issue of having code which takes a long time to complete in a graphical application, while needing code to run sequentially. Qt deals with this by using signals, and having a QThread emit a finished signal. Does GTK have an equivalent?
I'm aware that this could be partially solved using Queue , with a put() and get() in relevant functions, however I don't understand how to get this to work if the main thread is calling anything other than functions.
EDIT: Given that it's possible to have threaded_function call second_normal_function using GLib.idle_add, let's take an example where in main_function, the second_normal_function call is replaced with a print statement, such that:
def main_function(self, widget):
self.first_normal_function()
thread = threading.Thread(target=self.threaded_function)
thread.daemon = True
thread.start()
print('this comes after the thread is finished')
...
...
...
#some more code here
With GLib.idle_add, the print statement and all the code afterwards would need to be moved into a separate function. Is it possible to avoid moving the print statement into its own function while maintaining sequentiality, such that the print statement remains where it is and still gets called after threaded_function is finished?
Your suggestion on how to do this was very close to the actual solution, but it's indeed not going to work.
In essence, what you'll indeed want to do, is to run the long-running function in a different thread. That'll mean you get 2 threads: one which is running the main event loop that (amongs other things) updates your UI, and another thread which does the long-running logic.
Of course, that bears the question: how do I notify the main thread that some work is done and I want it to react to that? For example, you might want to update the UI while (or after) some complex calculation is going on. For this, you can use GLib.idle_add() from within the other thread. That function takes a single callback as an argument, which it will run as soon as it can ("on idle").
So a possibility to use here, would be something like this:
class Main(Gtk.Window):
def __init__(self):
super().__init__()
self.button = Gtk.Button(label='button')
self.add(self.button)
self.button.connect('clicked', self.main_function)
thread = threading.Thread(target=self.threaded_function)
thread.daemon = True
thread.start()
def threaded_function(self):
# Really intensive stuff going on here
sleep(20)
# We're done, schedule "on_idle" to be called in the main thread
GLib.idle_add(self.on_idle)
# Note, this function will be run in the main loop thread, *not* in this one
def on_idle(self):
second_normal_function()
return GLib.SOURCE_REMOVE # we only want to run once
# ...
For more context, you might want to read the pygobject documentation on threading and concurrency
How do I multi-thread properly in Python?
I am trying to change the simple fork mechanism into a solution using the threading library (I think that forks causes some problems so I'm trying to replace them)
class CustomConsole(cmd.Cmd):
db = DatabaseControl()
bot = Bot(db)
addPoints = AddPointsToActiveUsers(db)
def do_startbot(self, args):
botThread = threading.Thread(target=self.bot.mainLoop(),
name='BotThread')
botThread.daemon = True
botThread.start()
def do_startpoints(self, args):
pointsThread = threading.Thread(target=self.addPoints.addPoints(),
name='PointsThread')
pointsThread.daemon = True
pointsThread.start()
if __name__ == '__main__':
CustomConsole().cmdloop()
Both objects have infinite loops inside, but when i am starting one of them and i can't start the other one as it seems that the the thread is taking control of the terminal.
I think there could be problem with the custom console but I have no idea how to not give control over terminal to the thread but to leave it to the main thread and just run it in background.
In addition I have no idea why, but even if I delete the objects.start() lines, the threads are starting and I have no control over terminal again.
The code formatting is good, I just can't format it here properly
I am using PySide version 1.2.2, which wraps the Qt v4.8 framework. I am in a situation where I have to choose between having my application wait for a QThread that I no longer need to exit normally (it is quite possible that the thread will block indefinitely), and giving the unresponsive thread a grace period (of several seconds), then calling QThread.terminate() on it. Though I wish I could, I cannot let the QThread object go out of scope while the underlying thread is still running, since this will throw the error "QThread: Destroyed while thread is still running" and almost surely cause a segfault.
Please note that I am aware that terminating QThreads is dangerous and highly discouraged. I am just trying to explore my options here.
When I try to terminate a thread however, my application crashes with the following error:
Fatal Python error: This thread state must be current when releasing
You can try this out yourself by copy/pasting and running the following code:
from PySide import QtCore, QtGui
class Looper(QtCore.QThread):
"""QThread that prints natural numbers, one by one to stdout."""
def __init__(self, *args, **kwargs):
super(Looper, self).__init__(*args, **kwargs)
self.setTerminationEnabled(True)
def run(self):
i = 0
while True:
self.msleep(100)
print(i)
i += 1
# Initialize and start a looper.
looper = Looper()
looper.start()
# Sleep main thread for 5 seconds.
QtCore.QThread.sleep(5)
# Terminate looper.
looper.terminate()
# After calling terminate(), we should call looper.wait() or listen
# for the QThread.terminated signal, but that is irrelevant for
# the purpose of this example.
app = QtGui.QApplication([])
app.exec_()
How do you properly terminate QThreads in Python?
I reckon that the error I am getting has got something to do with releasing of the Global Interpreter Lock, but I am not sure exactly what is going wrong, and how to fix it.
It seems that the error may be specific to PySide: running your example with PyQt4 does not produce any errors at all.
As for the general issue of how to terminate a QThread safely: it entirely depends on how much control you have over the work that is being done in the thread. If it is effectively a loop where you can periodically check a flag, then the solution is simple:
class Looper(QtCore.QThread):
...
def interrupt(self):
self._active = False
def run(self):
i = 0
self._active = True
while self._active:
self.msleep(100)
print(i)
i += 1
app = QtGui.QApplication([])
looper = Looper()
looper.finished.connect(app.quit)
looper.start()
QtCore.QTimer.singleShot(3000, looper.interrupt)
app.exec_()
The thread will finish cleanly once the run method returns, so you must find some mechanism to allow that happen. If you can't do that (perhaps because the work being done in the thread is largely outside of your control), you should probably consider switching to a multiprocessing approach instead.
I'm trying to wrap the blocking calls in pyaudio with a thread to give me non-blocking access through queues. However, the problem I have is not with pyaudio, or queues, but with the issue of trying to test a thread. In keeping with "strip the example down to the minimum possible", all the pyaudio stuff has vanished, to leave only the thread class, and its instantiation in a main.
What I was hoping for was an object that I could create, and leave to get on with its stuff in the background, while I do control things with the console or tk. I figure the following max-stripped down example should have the thread doing stuff, while main runs and asks me if it is working. The raw_input prompt never appears. I would not be surprised at this if I was running it from IDLE, which is not thread safe, but I get the same behaviour if I run the script directly from the OS. I was prepared to see the raw input prompt disappear up the screen pushed by 'running' prints, but not even that happens. The prompt never appears. What's going on? It does respond to ctrl-C and to closing the window, but I'd still like to be able to see main running.
import threading
import time
class TestThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.running=True
self.run()
def run(self):
while self.running:
time.sleep(0.5)
print 'running'
def stop(self):
self.running=False
if __name__=='__main__':
tt=TestThread()
a=raw_input('simple stuff working ? -- ')
tt.stop()
You should start the thread with self.start() instead of self.run(). In this case you are just running the thread function like any other normal function.
Normally you do not inherit from Thread. Instead, you use Thread(target=func2run).start()
For example:
class DemoFrame(wx.Frame):
def __init__(self):
Initializing
...
self.TextA = wx.StaticText(MainPanel, id = -1, label = "TextAOrWhatever")
self.TextB = wx.StaticText(MainPanel, id = -1, label = "TextBOrWhatever")
...
def StaticTextUpdating(self, ObjectName, Message):
ObjectName.SetLabel(Message)
def WorkerA(self):
while True:
Work on something
UpdatingThread = threading.Thread(target = self.StaticTextUpdating, args = (self.TextA, "Something for TextA", ))
UpdatingThread.start()
time.sleep(randomSecs)
def WorkerB(self):
while True:
Work on something
UpdatingThread = threading.Thread(target = self.StaticTextUpdating, args = (self.TextB, "Something for TextB", ))
UpdatingThread.start()
time.sleep(randomSecs)
...
def StartWorking(self):
Spawn WorkerA thread
Spawn WorkerB thread
...
As you can see, I always update StaticText in new threads, and I'm 100% sure at a whatever certain time point there's only one thread updating a specific object, but the problem is, every now and then after running for a while, some objects just disappear. Why is this happening? Does it mean GUI updating is not thread safe? Maybe only one object can be updated at a certain time point?
Added:
OK, wx.CallAfter should be a good solution for above codes. But I got another question, what if a button event and SetLabel happens at the same time? Wouldn't things like this cause troubles although I don't see any?
Most wx methods are not thread-safe. Use wx.CallAfter if you want to invoke a wx method from another thread; replace
ObjectName.SetLabel(Message)
with:
wx.CallAfter(ObjectName.SetLabel, Message)
Edit: Some Background Information
In wx (And in most other UI platforms) all the UI updates get executed in a single thread called main thread (Or UI Thread). This is to make the UI work faster by avoiding the performance hit of thread synchronization.
But the down side of this is that If we write code to update the UI from a different thread the results are undefined. Sometimes it may work, sometimes it may crash, sometimes some other thing may happen. So we should always go to UI thread to do the UI updates. So we use CallAfter function to make UI update function execute in the UI thread.
UI thread in java
UI thread in C#
The main thing to remember is that you shouldn't update anything in wxPython without using a threadsafe method, such as wx.CallAfter, wx.CallLater or wx.PostEvent. See http://wiki.wxpython.org/LongRunningTasks or http://www.blog.pythonlibrary.org/2010/05/22/wxpython-and-threads/ for more information.