I have this structure, converted using json.load(json)
jsonData = [ {
thing: [
name: 'a name',
keys: [
key1: 23123,
key2: 83422
]
thing: [
name: 'another name',
keys: [
key1: 67564,
key2: 93453
]
etc....
} ]
I have key1check = 67564,
I want to check if a thing's key1 matches this value
if key1check in val['thing']['keys']['key1'] for val in jsonData:
print ('key found, has name of: {}'.format(jsonData['thing']['name'])
Should this work? Is there a better was to do this?
Not quite:
in is for inclusion in a sequence, such as a string or a list. You're comparing integer values, so a simple == is what you need.
Your given structure isn't legal Python: you have brackets in several places where you're intending a dictionary; you need braces instead.
Otherwise, you're doing fine ... but you should not ask us if it will work: ask the Python interpreter by running the code.
Try this for your structure:
jsonData = [
{ "thing": {
"name": 'a name',
"keys": {
"key1": 23123,
"key2": 83422
} } },
{ "thing": {
"name": 'another name',
"keys": {
"key1": 67564,
"key2": 93453
} } }
]
You can loop through #Prune 's dictionary using something like this as long as the structure is consistent.
for item in jsonData:
if item['thing']['keys']['key1'] == key1check:
print("true")
else:
print("false")
Related
I have some json that I would like to transform from this:
[
{
"name":"field1",
"intValue":"1"
},
{
"name":"field2",
"intValue":"2"
},
...
{
"name":"fieldN",
"intValue":"N"
}
]
into this:
{ "field1" : "1",
"field2" : "2",
...
"fieldN" : "N",
}
For each pair, I need to change the value of the name field to a key, and the values of the intValue field to a value. This doesn't seem like flattening or denormalizing. Are there any tools that might do this out-of-the-box, or will this have to be brute-forced? What's the most pythonic way to accomplish this?
parameters = [ # assuming this is loaded already
{
"name":"field1",
"intValue":"1"
},
{
"name":"field2",
"intValue":"2"
},
{
"name":"fieldN",
"intValue":"N"
}
]
field_int_map = dict()
for p in parameters:
field_int_map[p['name']] = p['intValue']
yields {'field1': '1', 'field2': '2', 'fieldN': 'N'}
or as a dict comprehension
field_int_map = {p['name']:p['intValue'] for p in parameters}
This works to combine the name attribute with the intValue as key:value pairs, but the result is a dictionary instead of the original input type which was a list.
Use dictionary comprehension:
json_dct = {"parameters":
[
{
"name":"field1",
"intValue":"1"
},
{
"name":"field2",
"intValue":"2"
},
{
"name":"fieldN",
"intValue":"N"
}
]}
dct = {d["name"]: d["intValue"] for d in json_dct["parameters"]}
print(dct)
# {'field1': '1', 'field2': '2', 'fieldN': 'N'}
I have a JSON file where I need to replace the UUID and update it with another one. I'm having trouble replacing the deeply nested keys and values.
Below is my JSON file that I need to read in python, replace the keys and values and update the file.
JSON file - myfile.json
{
"name": "Shipping box"
"company":"Detla shipping"
"description":"---"
"details" : {
"boxes":[
{
"box_name":"alpha",
"id":"a3954710-5075-4f52-8eb4-1137be51bf14"
},
{
"box_name":"beta",
"id":"31be3763-3d63-4e70-a9b6-d197b5cb6929"
}
]
}
"container": [
"a3954710-5075-4f52-8eb4-1137be51bf14":[],
"31be3763-3d63-4e70-a9b6-d197b5cb6929":[]
]
"data":[
{
"data_series":[],
"other":50
},
{
"data_series":[],
"other":40
},
{
"data_series":
{
"a3954710-5075-4f52-8eb4-1137be51bf14":
{
{
"dimentions":[2,10,12]
}
},
"31be3763-3d63-4e70-a9b6-d197b5cb6929":
{
{
"dimentions":[3,9,12]
}
}
},
"other":50
}
]
}
I want achieve something like the following-
"details" : {
"boxes":[
{
"box_name":"alpha"
"id":"replace_uuid"
},
}
.
.
.
"data":[ {
"data_series":
{
"replace_uuid":
{
{
"dimentions":[2,10,12]
}
}
]
In such a type of deeply nested dictionary, how can we replace all the occurrence of keys and values with another string, here replace_uuid?
I tried with pop() and dotty_dict but I wasn't able to replace the nested list.
I was able to achieve it in the following way-
def uuid_change(): #generate a random uuid
new_uuid = uuid.uuid4()
return str(new_uuid)
dict = json.load(f)
for uid in dict[details][boxes]:
old_id = uid['id']
replace_id = uuid_change()
uid['id'] = replace_id
for i in range(n):
for uid1 in dict['container'][i].keys()
if uid1 == old_id:
dict['container'][i][replace_id]
= dict['container'][i].pop(uid1) #replace the key
for uid2 in dict['data'][2]['data_series'].keys()
if uid2 == old_id:
dict['data'][2]['data_series'][replace_id]
= dict['data'][2]['data_series'].pop(uid2) #replace the key
I have a list of dictionary as below. I need to iterate the list of dictionary and remove the content of the parameters and set as an empty dictionary in sections dictionary.
input = [
{
"category":"Configuration",
"sections":[
{
"section_name":"Global",
"parameters":{
"name":"first",
"age":"second"
}
},
{
"section_name":"Operator",
"parameters":{
"adrress":"first",
"city":"first"
}
}
]
},
{
"category":"Module",
"sections":[
{
"section_name":"Global",
"parameters":{
"name":"first",
"age":"second"
}
}
]
}
]
Expected Output:
[
{
"category":"Configuration",
"sections":[
{
"section_name":"Global",
"parameters":{}
},
{
"section_name":"Operator",
"parameters":{}
}
]
},
{
"category":"Module",
"sections":[
{
"section_name":"Global",
"parameters":{}
}
]
}
]
My current code looks like below:
category_list = []
for categories in input:
sections_list = []
category_name_dict = {"category": categories["category"]}
for sections_dict in categories["sections"]:
section = {}
section["section_name"] = sections_dict['section_name']
section["parameters"] = {}
sections_list.append(section)
category_name_dict["sections"] = sections_list
category_list.append(category_name_dict)
Is there any elegant and more performant way to do compute this logic. Keys such as category, sections, section_name, and parameters are constants.
The easier way is not to rebuild the dictionary without the parameters, just clear it in every section:
for value in values:
for section in value['sections']:
section['parameters'] = {}
Code demo
Elegance is in the eye of the beholder, but rather than creating empty lists and dictionaries then filling them why not do it in one go with a list comprehension:
category_list = [
{
**category,
"sections": [
{
**section,
"parameters": {},
}
for section in category["sections"]
],
}
for category in input
]
This is more efficient and (in my opinion) makes it clearer that the intention is to change a single key.
I am using python2.7
I have a json i pull that is always changing when i request it.
I need to pull out Animal_Target_DisplayName under Term7 Under Relation6 in my dict.
The problem is sometimes the object Relation6 is in another part of the Json, it could be leveled deeper or in another order.
I am trying to create code that can just export the values of the key Animal_Target_DisplayName but nothing is working. It wont even loop down the nested dict.
Now this can work if i just pull it out using something like ['view']['Term0'][0]['Relation6'] but remember the JSON is never returned in the same structure.
Code i am using to get the values of the key Animal_Target_DisplayName but it doesnt seem to loop through my dict and find all the values with that key.
array = []
for d in dict.values():
row = d['Animal_Target_DisplayName']
array.append(row)
JSON Below:
dict = {
"view":{
"Term0":[
{
"Id":"b0987b91-af12-4fe3-a56f-152ac7a4d84d",
"DisplayName":"Dog",
"FullName":"Dog",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"ee74a59d-fb74-4052-97ba-9752154f015d",
"DisplayName":"Dog2",
"FullName":"Dog",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"eb548eae-da6f-41e8-80ea-7e9984f56af6",
"DisplayName":"Dog3",
"FullName":"Dog3",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0000-000000031131",
}
]
},
{
"Id":"cfac6dd4-0efa-4417-a2bf-0333204f8a42",
"DisplayName":"Animal Set",
"FullName":"Animal Set",
"AssetType1":[
{
"AssetType_Id":"00000000-0000-0000-0001-000400000001",
}
],
"StringAttribute2":[
{
"StringAttribute_00000000-0000-0000-0000-000000003114_Id":"00a701a8-be4c-4b76-a6e5-3b0a4085bcc8",
"StringAttribute_00000000-0000-0000-0000-000000003114_Value":"Desc"
}
],
"StringAttribute3":[
{
"StringAttribute_00000000-0000-0000-0000-000000000262_Id":"a81adfb4-7528-4673-8c95-953888f3b43a",
"StringAttribute_00000000-0000-0000-0000-000000000262_Value":"meow"
}
],
"BooleanAttribute4":[
{
"BooleanAttribute_00000000-0000-0000-0001-000500000001_Id":"932c5f97-c03f-4a1a-a0c5-a518f5edef5e",
"BooleanAttribute_00000000-0000-0000-0001-000500000001_Value":"true"
}
],
"SingleValueListAttribute5":[
{
"SingleValueListAttribute_00000000-0000-0000-0001-000500000031_Id":"ef51dedd-6f25-4408-99a6-5a6cfa13e198",
"SingleValueListAttribute_00000000-0000-0000-0001-000500000031_Value":"Blah"
}
],
"Relation6":[
{
"Animal_Id":"2715ca09-3ced-4b74-a418-cef4a95dddf1",
"Term7":[
{
"Animal_Target_Id":"88fd0090-4ea8-4ae6-b7f0-1b13e5cf3d74",
"Animal_Target_DisplayName":"Animaltheater",
"Animal_Target_FullName":"Animaltheater"
}
]
},
{
"Animal_Id":"6068fe78-fc8e-4542-9aee-7b4b68760dcd",
"Term7":[
{
"Animal_Target_Id":"4e87a614-2a8b-46c0-90f3-8a0cf9bda66c",
"Animal_Target_DisplayName":"Animaltitle",
"Animal_Target_FullName":"Animaltitle"
}
]
},
{
"Animal_Id":"754ec0e6-19b6-4b6b-8ba1-573393268257",
"Term7":[
{
"Animal_Target_Id":"a8986ed5-3ec8-44f3-954c-71cacb280ace",
"Animal_Target_DisplayName":"Animalcustomer",
"Animal_Target_FullName":"Animalcustomer"
}
]
},
{
"Animal_Id":"86b3ffd1-4d54-4a98-b25b-369060651bd6",
"Term7":[
{
"Animal_Target_Id":"89d02067-ebe8-4b87-9a1f-a6a0bdd40ec4",
"Animal_Target_DisplayName":"Animalfact_transaction",
"Animal_Target_FullName":"Animalfact_transaction"
}
]
},
{
"Animal_Id":"ea2e1b76-f8bc-46d9-8ebc-44ffdd60f213",
"Term7":[
{
"Animal_Target_Id":"e398cd32-1e73-46bd-8b8f-d039986d6de0",
"Animal_Target_DisplayName":"Animalfact_transaction",
"Animal_Target_FullName":"Animalfact_transaction"
}
]
}
],
"Relation10":[
{
"TargetRelation_b8b178ff-e957-47db-a4e7-6e5b789d6f03_Id":"aff80bd0-a282-4cf5-bdcc-2bad35ddec1d",
"Term11":[
{
"AnimalId":"3ac22167-eb91-469a-9d94-315aa301f55a",
"AnimalDisplayName":"Animal",
"AnimalFullName":"Animal"
}
]
}
],
"Tag12":[
{
"Tag_Id":"75968ea6-4c9f-43c9-80f7-dfc41b24ec8f",
"Tag_Name":"AnimalAnimaltitle"
},
{
"Tag_Id":"b1adbc00-aeef-415b-82b6-a3159145c60d",
"Tag_Name":"Animal2"
},
{
"Tag_Id":"5f78e4dc-2b37-41e0-a0d3-cec773af2397",
"Tag_Name":"AnimalDisplayName"
}
]
}
]
}
}
The output i am trying to get is a list of all the values from key Animal_Target_DisplayName like this ['Animaltheater','Animaltitle', 'Animalcustomer', 'Animalfact_transaction', 'Animalfact_transaction'] but we need to remember the nested structure of this json always changes but the keys for it are always the same.
I guess your only option is running through the entire dict and get the values of Animal_Target_DisplayName key, I propose the following recursive solution:
def run_json(dict_):
animal_target_sons = []
if type(dict_) is list:
for element in dict_:
animal_target_sons.append(run_json(element))
elif type(dict_) is dict:
for key in dict_:
if key=="Animal_Target_DisplayName":
animal_target_sons.append([dict_[key]])
else:
animal_target_sons.append(run_json(dict_[key]))
return [x for sublist in animal_target_sons for x in sublist]
run_json(dict_)
Then calling run_json returns a list with what you want. By the way, I recommend you to rename your json from dict to, for example dict_, since dict is a reserved word of Python for the dictionary type.
Since you're getting JSON, why not make use of the json module? That will do the parsing for you and allow you to use dictionary functions+features to get the information you need.
#!/usr/bin/python2.7
from __future__ import print_function
import json
# _somehow_ get your JSON in as a string. I'm calling it "jstr" for this
# example.
# Use the module to parse it
jdict = json.loads(jstr)
# our dict has keys...
# view -> Term0 -> keys-we're-interested-in
templist = jdict["view"]["Term0"]
results = {}
for _el in range(len(templist)):
if templist[_el]["FullName"] == "Animal Set":
# this is the one we're interested in - and it's another list
moretemp = templist[_el]["Relation6"]
for _k in range(len(moretemp)):
term7 = moretemp[_k]["Term7"][0]
displayName = term7["Animal_Target_DisplayName"]
fullName = term7["Animal_Target_FullName"]
results[fullName] = displayName
print("{0}".format(results))
Then you can dump the results dict plain, or with pretty-printing:
>>> print(json.dumps(results, indent=4))
{
"Animaltitle2": "Animaltitle2",
"Animalcustomer3": "Animalcustomer3",
"Animalfact_transaction4": "Animalfact_transaction4",
"Animaltheater1": "Animaltheater1"
}
I basically have a file with this structure:
root \
{
field1 {
subfield_a {
"value1"
}
subfield_b {
"value2"
}
subfield_c {
"value1"
"value2"
"value3"
}
subfield_d {
}
}
field2 {
subfield_a {
"value1"
}
subfield_b {
"value1"
}
subfield_c {
"value1"
"value2"
"value3"
"value4"
"value5"
}
subfield_d {
}
}
}
I want to parse this file with python to get a multidimensional array that contains all the values of a specific subfield (for examples subfield_c). E.g. :
tmp = magic_parse_function("subfield_c",file)
print tmp[0] # [ "value1", "value2", "value3"]
print tmp[1] # [ "value1", "value2", "value3", "value4", "value5"]
I'm pretty sure I've to use the pyparsing class, but I don't where to start to set the regex (?) expression. Can someone give me some pointers ?
You can let pyparsing take care of the matching and iterating over the input, just define what you want it to match, and pass it the body of the file as a string:
def magic_parse_function(fld_name, source):
from pyparsing import Keyword, nestedExpr
# define parser
parser = Keyword(fld_name).suppress() + nestedExpr('{','}')("content")
# search input string for matching keyword and following braced content
matches = parser.searchString(source)
# remove quotation marks
return [[qs.strip('"') for qs in r[0].asList()] for r in matches]
# read content of file into a string 'file_body' and pass it to the function
tmp = magic_parse_function("subfield_c",file_body)
print(tmp[0])
print(tmp[1])
prints:
['value1', 'value2', 'value3']
['value1', 'value2', 'value3', 'value4', 'value5']