Neested loops in pandas python - python

I have two DataFrames One with many rows and another one with a few rows and I need to merge these two Dataframes according some conditions (in strings). I used nested loops in Pandas like this:
density = []
for row in df.itertuples():
for row1 in df2.itertuples():
if(row['a'].find(row1['b']))>0:
density.append(row1['c'])
But I receive the error message:
TypeError: tuple indices must be integers, not str
What's wrong?

Consider df and df2
df = pd.DataFrame(dict(
a=['abcd', 'stk', 'shij', 'dfffedeffj', 'abcdefghijk'],
))
df2 = pd.DataFrame(dict(
b=['abc', 'hij', 'def'],
c=[1, 2, 3]
))
You can produce decent-ish speed with get_value and set_value. And I'd store the values in a dataframe
density = pd.DataFrame(index=df.index, columns=df2.index)
for i in df.index:
for j in df2.index:
a = df.get_value(i, 'a')
b = df2.get_value(j, 'b')
if a.find(b) >= 0:
density.set_value(i, j, df2.get_value(j, 'c'))
print(density)
0 1 2
0 1 NaN NaN
1 NaN NaN NaN
2 NaN 2 NaN
3 NaN NaN 3
4 1 2 3
You can also use a composite numpy str functions
t = df2.b.apply(lambda x: df.a.str.contains(x)).values
c = df2.c.values[:, None]
density = pd.DataFrame(
np.where(t, np.hstack([c] * t.shape[1]), np.nan).T,
df.index, df2.index)

The method DataFrame.itertuples returns namedtuples and to access the values in a namedtuple you have to use the dot notation.
density = []
for row in df.itertuples():
for row1 in df2.itertuples():
if row.a.find(row1.b) > 0:
density.append(row1.c)
Nevertheless, this does not produce a merge of the two DataFrames.

Related

How to extract a subset of a bigger dataset [duplicate]

A simple pandas question:
Is there a drop_duplicates() functionality to drop every row involved in the duplication?
An equivalent question is the following: Does pandas have a set difference for dataframes?
For example:
In [5]: df1 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
In [6]: df2 = pd.DataFrame({'col1':[4,2,5], 'col2':[6,3,5]})
In [7]: df1
Out[7]:
col1 col2
0 1 2
1 2 3
2 3 4
In [8]: df2
Out[8]:
col1 col2
0 4 6
1 2 3
2 5 5
so maybe something like df2.set_diff(df1) will produce this:
col1 col2
0 4 6
2 5 5
However, I don't want to rely on indexes because in my case, I have to deal with dataframes that have distinct indexes.
By the way, I initially thought about an extension of the current drop_duplicates() method, but now I realize that the second approach using properties of set theory would be far more useful in general. Both approaches solve my current problem, though.
Thanks!
Bit convoluted but if you want to totally ignore the index data. Convert the contents of the dataframes to sets of tuples containing the columns:
ds1 = set(map(tuple, df1.values))
ds2 = set(map(tuple, df2.values))
This step will get rid of any duplicates in the dataframes as well (index ignored)
set([(1, 2), (3, 4), (2, 3)]) # ds1
can then use set methods to find anything. Eg to find differences:
ds1.difference(ds2)
gives:
set([(1, 2), (3, 4)])
can take that back to dataframe if needed. Note have to transform set to list 1st as set cannot be used to construct dataframe:
pd.DataFrame(list(ds1.difference(ds2)))
Here's another answer that keeps the index and does not require identical indexes in two data frames. (EDIT: make sure there is no duplicates in df2 beforehand)
pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
It is fast and the result is
col1 col2
0 4 6
2 5 5
from pandas import DataFrame
df1 = DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
df2 = DataFrame({'col1':[4,2,5], 'col2':[6,3,5]})
print(df2[~df2.isin(df1).all(1)])
print(df2[(df2!=df1)].dropna(how='all'))
print(df2[~(df2==df1)].dropna(how='all'))
Apply by the columns of the object you want to map (df2); find the rows that are not in the set (isin is like a set operator)
In [32]: df2.apply(lambda x: df2.loc[~x.isin(df1[x.name]),x.name])
Out[32]:
col1 col2
0 4 6
2 5 5
Same thing, but include all values in df1, but still per column in df2
In [33]: df2.apply(lambda x: df2.loc[~x.isin(df1.values.ravel()),x.name])
Out[33]:
col1 col2
0 NaN 6
2 5 5
2nd example
In [34]: g = pd.DataFrame({'x': [1.2,1.5,1.3], 'y': [4,4,4]})
In [35]: g.columns=df1.columns
In [36]: g
Out[36]: 
   col1  col2
0   1.2     4
1   1.5     4
2   1.3     4
In [32]: g.apply(lambda x: g.loc[~x.isin(df1[x.name]),x.name])
Out[32]:
col1 col2
0 1.2 NaN
1 1.5 NaN
2 1.3 NaN
Note, in 0.13, there will be an isin operator on the frame level, so something like: df2.isin(df1) should be possible
There are 3 methods which work, but two of them have some flaws.
Method 1 (Hash method):
It worked for all cases I tested.
df1.loc[:, "hash"] = df1.apply(lambda x: hash(tuple(x)), axis = 1)
df2.loc[:, "hash"] = df2.apply(lambda x: hash(tuple(x)), axis = 1)
df1 = df1.loc[~df1["hash"].isin(df2["hash"]), :]
Method 2 (Dict method):
It fails if DataFrames contain datetime columns.
df1 = df1.loc[~df1.isin(df2.to_dict(orient="list")).all(axis=1), :]
Method 3 (MultiIndex method):
I encountered cases when it failed on columns with None's or NaN's.
df1 = df1.loc[~df1.set_index(list(df1.columns)).index.isin(df2.set_index(list(df2.columns)).index)
Edit: You can now make MultiIndex objects directly from data frames as of pandas 0.24.0 which greatly simplifies the syntax of this answer
df1mi = pd.MultiIndex.from_frame(df1)
df2mi = pd.MultiIndex.from_frame(df2)
dfdiff = df2mi.difference(df1mi).to_frame().reset_index(drop=True)
Original Answer
Pandas MultiIndex objects have fast set operations implemented as methods, so you can convert the DataFrames to MultiIndexes, use the difference() method, then convert the result back to a DataFrame. This solution should be much faster (by ~100x or more from my brief testing) than the solutions given here so far, and it will not depend on the row indexing of the original frames. As Piotr mentioned for his answer, this will fail with null values, since np.nan != np.nan. Any row in df2 with a null value will always appear in the difference. Also, the columns should be in the same order for both DataFrames.
df1mi = pd.MultiIndex.from_arrays(df1.values.transpose(), names=df1.columns)
df2mi = pd.MultiIndex.from_arrays(df2.values.transpose(), names=df2.columns)
dfdiff = df2mi.difference(df1mi).to_frame().reset_index(drop=True)
Numpy's setdiff1d would work and perhaps be faster.
For each column:
np.setdiff1(df1.col1.values, df2.col1.values)
So something like:
setdf = pd.DataFrame({
col: np.setdiff1d(getattr(df1, col).values, getattr(df2, col).values)
for col in df1.columns
})
numpy.setdiff1d docs
Get the indices of the intersection with a merge, then drop them:
>>> df_all = pd.DataFrame(np.arange(8).reshape((4,2)), columns=['A','B']); df_all
A B
0 0 1
1 2 3
2 4 5
3 6 7
>>> df_completed = df_all.iloc[::2]; df_completed
A B
0 0 1
2 4 5
>>> merged = pd.merge(df_all.reset_index(), df_completed); merged
index A B
0 0 0 1
1 2 4 5
>>> df_pending = df_all.drop(merged['index']); df_pending
A B
1 2 3
3 6 7
Assumption:
df1 and df2 have identical columns
it is a set operation so duplicates are ignored
sets are not extremely large so you do not worry about memory
union = pd.concat([df1,df2])
sym_diff = union[~union.duplicated(keep=False)]
union_of_df1_and_sym_diff = pd.concat([df1, sym_diff])
diff = union_of_df1_and_sym_diff[union_of_df1_and_sym_diff.duplicated()]
I'm not sure how pd.concat() implicitly joins overlapping columns but I had to do a little tweak on #radream's answer.
Conceptually, a set difference (symmetric) on multiple columns is a set union (outer join) minus a set intersection (or inner join):
df1 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
df2 = pd.DataFrame({'col1':[4,2,5], 'col2':[6,3,5]})
o = pd.merge(df1, df2, how='outer')
i = pd.merge(df1, df2)
set_diff = pd.concat([o, i]).drop_duplicates(keep=False)
This yields:
col1 col2
0 1 2
2 3 4
3 4 6
4 5 5
In Pandas 1.1.0 you can count unique rows with value_counts and find difference between counts:
df1 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
df2 = pd.DataFrame({'col1':[4,2,5], 'col2':[6,3,5]})
diff = df2.value_counts().sub(df1.value_counts(), fill_value=0)
Result:
col1 col2
1 2 -1.0
2 3 0.0
3 4 -1.0
4 6 1.0
5 5 1.0
dtype: float64
Get positive counts:
diff[diff > 0].reset_index(name='counts')
col1 col2 counts
0 4 6 1.0
1 5 5 1.0
this should work even if you have multiple columns in both dataframes. But make sure that the column names of both the dataframes are the exact same.
set_difference = pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
With multiple columns you can also use:
col_names=['col_1','col_2']
set_difference = pd.concat([df2[col_names], df1[col_names],
df1[col_names]]).drop_duplicates(keep=False)

Element-wise Comparison of Two Pandas Dataframes

I am trying to compare two columns in pandas. I know I can do:
# either using Pandas' equals()
df1[col].equals(df2[col])
# or this
df1[col] == df2[col]
However, what I am looking for is to compare these columns elment-wise and when they are not matching print out both values. I have tried:
if df1[col] != df2[col]:
print(df1[col])
print(df2[col])
where I get the error for 'The truth value of a Series is ambiguous'
I believe this is because the column is treated as a series of boolean values for the comparison which causes the ambiguity. I also tried various forms of for loops which did not resolve the issue.
Can anyone point me to how I should go about doing what I described?
This might work for you:
import pandas as pd
df1 = pd.DataFrame({'col1': [1, 2, 3, 4, 5]})
df2 = pd.DataFrame({'col1': [1, 2, 9, 4, 7]})
if not df2[df2['col1'] != df1['col1']].empty:
print(df1[df1['col1'] != df2['col1']])
print(df2[df2['col1'] != df1['col1']])
Output:
col1
2 3
4 5
col1
2 9
4 7
You need to get hold of the index where the column values are not matching. Once you have that index then you can query the individual DFs to get the values.
Please try the fallowing and is if this helps:
for ind in (df1.loc[df1['col1'] != df2['col1']].index):
x = df1.loc[df1.index == ind, 'col1'].values[0]
y = df2.loc[df2.index == ind, 'col1'].values[0]
print(x, y )
Solution
Try this. You could use any of the following one-line solutions.
# Option-1
df.loc[df.apply(lambda row: row[col1] != row[col2], axis=1), [col1, col2]]
# Option-2
df.loc[df[col1]!=df[col2], [col1, col2]]
Logic:
Option-1: We use pandas.DataFrame.apply() to evaluate the target columns row by row and pass the returned indices to df.loc[indices, [col1, col2]] and that returns the required set of rows where col1 != col2.
Option-2: We get the indices with df[col1] != df[col2] and the rest of the logic is the same as Option-1.
Dummy Data
I made the dummy data such that for indices: 2,6,8 we will find column 'a' and 'c' to be different. Thus, we want only those rows returned by the solution.
import numpy as np
import pandas as pd
a = np.arange(10)
c = a.copy()
c[[2,6,8]] = [0,20,40]
df = pd.DataFrame({'a': a, 'b': a**2, 'c': c})
print(df)
Output:
a b c
0 0 0 0
1 1 1 1
2 2 4 0
3 3 9 3
4 4 16 4
5 5 25 5
6 6 36 20
7 7 49 7
8 8 64 40
9 9 81 9
Applying the solution to the dummy data
We see that the solution proposed returns the result as expected.
col1, col2 = 'a', 'c'
result = df.loc[df.apply(lambda row: row[col1] != row[col2], axis=1), [col1, col2]]
print(result)
Output:
a c
2 2 0
6 6 20
8 8 40

Find all duplicate columns in a collection of data frames

Having a collection of data frames, the goal is to identify the duplicated column names and return them as a list.
Example
The input are 3 data frames df1, df2 and df3:
df1 = pd.DataFrame({'a':[1,5], 'b':[3,9], 'e':[0,7]})
a b e
0 1 3 0
1 5 9 7
df2 = pd.DataFrame({'d':[2,3], 'e':[0,7], 'f':[2,1]})
d e f
0 2 0 2
1 3 7 1
df3 = pd.DataFrame({'b':[3,9], 'c':[8,2], 'e':[0,7]})
b c e
0 3 8 0
1 9 2 7
The output is a list [b, e]
pd.Series.duplicated
Since you are using Pandas, you can use pd.Series.duplicated after concatenating column names:
# concatenate column labels
s = pd.concat([df.columns.to_series() for df in (df1, df2, df3)])
# keep all duplicates only, then extract unique names
res = s[s.duplicated(keep=False)].unique()
print(res)
array(['b', 'e'], dtype=object)
pd.Series.value_counts
Alternatively, you can extract a series of counts and identify rows which have a count greater than 1:
s = pd.concat([df.columns.to_series() for df in (df1, df2, df3)]).value_counts()
res = s[s > 1].index
print(res)
Index(['e', 'b'], dtype='object')
collections.Counter
The classic Python solution is to use collections.Counter followed by a list comprehension. Recall that list(df) returns the columns in a dataframe, so we can use this map and itertools.chain to produce an iterable to feed Counter.
from itertools import chain
from collections import Counter
c = Counter(chain.from_iterable(map(list, (df1, df2, df3))))
res = [k for k, v in c.items() if v > 1]
here is my code for this problem, for comparing with only two data frames, with out concat them.
def getDuplicateColumns(df1, df2):
df_compare = pd.DataFrame({'df1':df1.columns.to_list()})
df_compare["df2"] = ""
# Iterate over all the columns in dataframe
for x in range(df1.shape[1]):
# Select column at xth index.
col = df1.iloc[:, x]
# Iterate over all the columns in DataFrame from (x+1)th index till end
duplicateColumnNames = []
for y in range(df2.shape[1]):
# Select column at yth index.
otherCol = df2.iloc[:, y]
# Check if two columns at x y index are equal
if col.equals(otherCol):
duplicateColumnNames.append(df2.columns.values[y])
df_compare.loc[df_compare["df1"]==df1.columns.values[x], "df2"] = str(duplicateColumnNames)
return df_compare

pandas dataframe drop columns by number of nan

I have a dataframe with some columns containing nan. I'd like to drop those columns with certain number of nan. For example, in the following code, I'd like to drop any column with 2 or more nan. In this case, column 'C' will be dropped and only 'A' and 'B' will be kept. How can I implement it?
import pandas as pd
import numpy as np
dff = pd.DataFrame(np.random.randn(10,3), columns=list('ABC'))
dff.iloc[3,0] = np.nan
dff.iloc[6,1] = np.nan
dff.iloc[5:8,2] = np.nan
print dff
There is a thresh param for dropna, you just need to pass the length of your df - the number of NaN values you want as your threshold:
In [13]:
dff.dropna(thresh=len(dff) - 2, axis=1)
Out[13]:
A B
0 0.517199 -0.806304
1 -0.643074 0.229602
2 0.656728 0.535155
3 NaN -0.162345
4 -0.309663 -0.783539
5 1.244725 -0.274514
6 -0.254232 NaN
7 -1.242430 0.228660
8 -0.311874 -0.448886
9 -0.984453 -0.755416
So the above will drop any column that does not meet the criteria of the length of the df (number of rows) - 2 as the number of non-Na values.
You can use a conditional list comprehension:
>>> dff[[c for c in dff if dff[c].isnull().sum() < 2]]
A B
0 -0.819004 0.919190
1 0.922164 0.088111
2 0.188150 0.847099
3 NaN -0.053563
4 1.327250 -0.376076
5 3.724980 0.292757
6 -0.319342 NaN
7 -1.051529 0.389843
8 -0.805542 -0.018347
9 -0.816261 -1.627026
Here is a possible solution:
s = dff.isnull().apply(sum, axis=0) # count the number of nan in each column
print s
A 1
B 1
C 3
dtype: int64
for col in dff:
if s[col] >= 2:
del dff[col]
Or
for c in dff:
if sum(dff[c].isnull()) >= 2:
dff.drop(c, axis=1, inplace=True)
I recommend the drop-method. This is an alternative solution:
dff.drop(dff.loc[:,len(dff) - dff.isnull().sum() <2], axis=1)
Say you have to drop columns having more than 70% null values.
data.drop(data.loc[:,list((100*(data.isnull().sum()/len(data.index))>70))].columns, 1)
You can do this through another approach as well like below for dropping columns having certain number of na values:
df = df.drop( columns= [x for x in df if df[x].isna().sum() > 5 ])
For dropping columns having certain percentage of na values :
df = df.drop(columns= [x for x in df if round((df[x].isna().sum()/len(df)*100),2) > 20 ])

set difference for pandas

A simple pandas question:
Is there a drop_duplicates() functionality to drop every row involved in the duplication?
An equivalent question is the following: Does pandas have a set difference for dataframes?
For example:
In [5]: df1 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
In [6]: df2 = pd.DataFrame({'col1':[4,2,5], 'col2':[6,3,5]})
In [7]: df1
Out[7]:
col1 col2
0 1 2
1 2 3
2 3 4
In [8]: df2
Out[8]:
col1 col2
0 4 6
1 2 3
2 5 5
so maybe something like df2.set_diff(df1) will produce this:
col1 col2
0 4 6
2 5 5
However, I don't want to rely on indexes because in my case, I have to deal with dataframes that have distinct indexes.
By the way, I initially thought about an extension of the current drop_duplicates() method, but now I realize that the second approach using properties of set theory would be far more useful in general. Both approaches solve my current problem, though.
Thanks!
Bit convoluted but if you want to totally ignore the index data. Convert the contents of the dataframes to sets of tuples containing the columns:
ds1 = set(map(tuple, df1.values))
ds2 = set(map(tuple, df2.values))
This step will get rid of any duplicates in the dataframes as well (index ignored)
set([(1, 2), (3, 4), (2, 3)]) # ds1
can then use set methods to find anything. Eg to find differences:
ds1.difference(ds2)
gives:
set([(1, 2), (3, 4)])
can take that back to dataframe if needed. Note have to transform set to list 1st as set cannot be used to construct dataframe:
pd.DataFrame(list(ds1.difference(ds2)))
Here's another answer that keeps the index and does not require identical indexes in two data frames. (EDIT: make sure there is no duplicates in df2 beforehand)
pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
It is fast and the result is
col1 col2
0 4 6
2 5 5
from pandas import DataFrame
df1 = DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
df2 = DataFrame({'col1':[4,2,5], 'col2':[6,3,5]})
print(df2[~df2.isin(df1).all(1)])
print(df2[(df2!=df1)].dropna(how='all'))
print(df2[~(df2==df1)].dropna(how='all'))
Apply by the columns of the object you want to map (df2); find the rows that are not in the set (isin is like a set operator)
In [32]: df2.apply(lambda x: df2.loc[~x.isin(df1[x.name]),x.name])
Out[32]:
col1 col2
0 4 6
2 5 5
Same thing, but include all values in df1, but still per column in df2
In [33]: df2.apply(lambda x: df2.loc[~x.isin(df1.values.ravel()),x.name])
Out[33]:
col1 col2
0 NaN 6
2 5 5
2nd example
In [34]: g = pd.DataFrame({'x': [1.2,1.5,1.3], 'y': [4,4,4]})
In [35]: g.columns=df1.columns
In [36]: g
Out[36]: 
   col1  col2
0   1.2     4
1   1.5     4
2   1.3     4
In [32]: g.apply(lambda x: g.loc[~x.isin(df1[x.name]),x.name])
Out[32]:
col1 col2
0 1.2 NaN
1 1.5 NaN
2 1.3 NaN
Note, in 0.13, there will be an isin operator on the frame level, so something like: df2.isin(df1) should be possible
There are 3 methods which work, but two of them have some flaws.
Method 1 (Hash method):
It worked for all cases I tested.
df1.loc[:, "hash"] = df1.apply(lambda x: hash(tuple(x)), axis = 1)
df2.loc[:, "hash"] = df2.apply(lambda x: hash(tuple(x)), axis = 1)
df1 = df1.loc[~df1["hash"].isin(df2["hash"]), :]
Method 2 (Dict method):
It fails if DataFrames contain datetime columns.
df1 = df1.loc[~df1.isin(df2.to_dict(orient="list")).all(axis=1), :]
Method 3 (MultiIndex method):
I encountered cases when it failed on columns with None's or NaN's.
df1 = df1.loc[~df1.set_index(list(df1.columns)).index.isin(df2.set_index(list(df2.columns)).index)
Edit: You can now make MultiIndex objects directly from data frames as of pandas 0.24.0 which greatly simplifies the syntax of this answer
df1mi = pd.MultiIndex.from_frame(df1)
df2mi = pd.MultiIndex.from_frame(df2)
dfdiff = df2mi.difference(df1mi).to_frame().reset_index(drop=True)
Original Answer
Pandas MultiIndex objects have fast set operations implemented as methods, so you can convert the DataFrames to MultiIndexes, use the difference() method, then convert the result back to a DataFrame. This solution should be much faster (by ~100x or more from my brief testing) than the solutions given here so far, and it will not depend on the row indexing of the original frames. As Piotr mentioned for his answer, this will fail with null values, since np.nan != np.nan. Any row in df2 with a null value will always appear in the difference. Also, the columns should be in the same order for both DataFrames.
df1mi = pd.MultiIndex.from_arrays(df1.values.transpose(), names=df1.columns)
df2mi = pd.MultiIndex.from_arrays(df2.values.transpose(), names=df2.columns)
dfdiff = df2mi.difference(df1mi).to_frame().reset_index(drop=True)
Numpy's setdiff1d would work and perhaps be faster.
For each column:
np.setdiff1(df1.col1.values, df2.col1.values)
So something like:
setdf = pd.DataFrame({
col: np.setdiff1d(getattr(df1, col).values, getattr(df2, col).values)
for col in df1.columns
})
numpy.setdiff1d docs
Get the indices of the intersection with a merge, then drop them:
>>> df_all = pd.DataFrame(np.arange(8).reshape((4,2)), columns=['A','B']); df_all
A B
0 0 1
1 2 3
2 4 5
3 6 7
>>> df_completed = df_all.iloc[::2]; df_completed
A B
0 0 1
2 4 5
>>> merged = pd.merge(df_all.reset_index(), df_completed); merged
index A B
0 0 0 1
1 2 4 5
>>> df_pending = df_all.drop(merged['index']); df_pending
A B
1 2 3
3 6 7
Assumption:
df1 and df2 have identical columns
it is a set operation so duplicates are ignored
sets are not extremely large so you do not worry about memory
union = pd.concat([df1,df2])
sym_diff = union[~union.duplicated(keep=False)]
union_of_df1_and_sym_diff = pd.concat([df1, sym_diff])
diff = union_of_df1_and_sym_diff[union_of_df1_and_sym_diff.duplicated()]
I'm not sure how pd.concat() implicitly joins overlapping columns but I had to do a little tweak on #radream's answer.
Conceptually, a set difference (symmetric) on multiple columns is a set union (outer join) minus a set intersection (or inner join):
df1 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
df2 = pd.DataFrame({'col1':[4,2,5], 'col2':[6,3,5]})
o = pd.merge(df1, df2, how='outer')
i = pd.merge(df1, df2)
set_diff = pd.concat([o, i]).drop_duplicates(keep=False)
This yields:
col1 col2
0 1 2
2 3 4
3 4 6
4 5 5
In Pandas 1.1.0 you can count unique rows with value_counts and find difference between counts:
df1 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
df2 = pd.DataFrame({'col1':[4,2,5], 'col2':[6,3,5]})
diff = df2.value_counts().sub(df1.value_counts(), fill_value=0)
Result:
col1 col2
1 2 -1.0
2 3 0.0
3 4 -1.0
4 6 1.0
5 5 1.0
dtype: float64
Get positive counts:
diff[diff > 0].reset_index(name='counts')
col1 col2 counts
0 4 6 1.0
1 5 5 1.0
this should work even if you have multiple columns in both dataframes. But make sure that the column names of both the dataframes are the exact same.
set_difference = pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
With multiple columns you can also use:
col_names=['col_1','col_2']
set_difference = pd.concat([df2[col_names], df1[col_names],
df1[col_names]]).drop_duplicates(keep=False)

Categories