Getting a pickle error when trying to run processes - python

What I'm trying to do is running a list of prime number decomposition in different processes at once. I have a threaded version that's working, but can't seem to get it working with processes.
import math
from Queue import Queue
import multiprocessing
def primes2(n):
primfac = []
num = n
d = 2
while d * d <= n:
while (n % d) == 0:
primfac.append(d) # supposing you want multiple factors repeated
n //= d
d += 1
if n > 1:
primfac.append(n)
myfile = open('processresults.txt', 'a')
myfile.write(str(num) + ":" + str(primfac) + "\n")
return primfac
def mp_factorizer(nums, nprocs):
def worker(nums, out_q):
""" The worker function, invoked in a process. 'nums' is a
list of numbers to factor. The results are placed in
a dictionary that's pushed to a queue.
"""
outdict = {}
for n in nums:
outdict[n] = primes2(n)
out_q.put(outdict)
# Each process will get 'chunksize' nums and a queue to put his out
# dict into
out_q = Queue()
chunksize = int(math.ceil(len(nums) / float(nprocs)))
procs = []
for i in range(nprocs):
p = multiprocessing.Process(
target=worker,
args=(nums[chunksize * i:chunksize * (i + 1)],
out_q))
procs.append(p)
p.start()
# Collect all results into a single result dict. We know how many dicts
# with results to expect.
resultdict = {}
for i in range(nprocs):
resultdict.update(out_q.get())
# Wait for all worker processes to finish
for p in procs:
p.join()
print resultdict
if __name__ == '__main__':
mp_factorizer((400243534500, 100345345000, 600034522000, 9000045346435345000), 4)
I'm getting a pickle error shown below:
Any help would be greatly appreciated :)

You need to use multiprocessing.Queue instead of regular Queue. +more
This is due the Process doesn't run using the same memory space and there are some objects that aren't pickable, like the a regular queue (Queue.Queue). To overcome this, the multiprocessing library provide a Queue class that is actually a Proxy to a Queue.
And also, you could extract the def worker(.. out as any other method. This could be your main problem because on "how" a process is forked on a OS level.
You can also use a multiprocessing.Manager +more.

dynamically created functions cannot be pickled and therefore cannot be used as the target of a Process, the function worker needs to be defined in the global scope instead of inside the definition of mp_factorizer.

Related

Given N generators, is it possible to create a generator that runs them in parallel processes and yields the zip of those generators?

Suppose I have N generators gen_1, ..., gen_N where each on them will yield the same number of values. I would like a generator gen such that it runs gen_1, ..., gen_N in N parallel processes and yields (next(gen_1), next(gen_2), ... next(gen_N))
That is I would like to have:
def gen():
yield (next(gen_1), next(gen_2), ... next(gen_N))
in such a way that each gen_i is running on its own process. Is it possible to do this? I have tried doing this in the following dummy example with no success:
A = range(4)
def gen(a):
B = ['a', 'b', 'c']
for b in B:
yield b + str(a)
def target(g):
return next(g)
processes = [Process(target=target, args=(gen(a),)) for a in A]
for p in processes:
p.start()
for p in processes:
p.join()
However I get the error TypeError: cannot pickle 'generator' object.
EDIT:
I have modified #darkonaut answer's a bit to fit my needs. I am posting it in case some of you find it useful. We first define a couple of utility functions:
from itertools import zip_longest
from typing import List, Generator
def grouper(iterable, n, fillvalue=iter([])):
"Collect data into fixed-length chunks or blocks"
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue)
def split_generators_into_batches(generators: List[Generator], n_splits):
chunks = grouper(generators, len(generators) // n_splits + 1)
return [zip_longest(*chunk) for chunk in chunks]
The following class is responsible for splitting any number of generators into n (number of processes) batches and proccessing them yielding the desired result:
import multiprocessing as mp
class GeneratorParallelProcessor:
SENTINEL = 'S'
def __init__(self, generators, n_processes = 2 * mp.cpu_count()):
self.n_processes = n_processes
self.generators = split_generators_into_batches(list(generators), n_processes)
self.queue = mp.SimpleQueue()
self.barrier = mp.Barrier(n_processes + 1)
self.sentinels = [self.SENTINEL] * n_processes
self.processes = [
mp.Process(target=self._worker, args=(self.barrier, self.queue, gen)) for gen in self.generators
]
def process(self):
for p in self.processes:
p.start()
while True:
results = list(itertools.chain(*(self.queue.get() for _ in self.generators)))
if results != self.sentinels:
yield results
self.barrier.wait()
else:
break
for p in self.processes:
p.join()
def _worker(self, barrier, queue, generator):
for x in generator:
queue.put(x)
barrier.wait()
queue.put(self.SENTINEL)
To use it just do the following:
parallel_processor = GeneratorParallelProcessor(generators)
for grouped_generator in parallel_processor.process():
output_handler(grouped_generator)
It's possible to get such an "Unified Parallel Generator (UPG)" (attempt to coin a name) with some effort, but as #jasonharper already mentioned, you definitely need to assemble the sub-generators within the child-processes, since a running generator can't be pickled.
The pattern below is re-usable with only the generator function gen() being custom to this example. The design uses multiprocessing.SimpleQueue for returning generator results to the parent and multiprocessing.Barrier for synchronization.
Calling Barrier.wait() will block the caller (thread in any process) until the number of specified parties has called .wait(), whereupon all threads currently waiting on the Barrier get released simultaneously. The usage of Barrier here ensures further generator-results are only started to be computed after the parent has received all results from an iteration, which might be desirable to keep overall memory consumption in check.
The number of parallel workers used equals the number of argument-tuples you provide within the gen_args_tuples-iterable, so gen_args_tuples=zip(range(4)) will use four workers for example. See comments in code for further details.
import multiprocessing as mp
SENTINEL = 'SENTINEL'
def gen(a):
"""Your individual generator function."""
lst = ['a', 'b', 'c']
for ch in lst:
for _ in range(int(10e6)): # some dummy computation
pass
yield ch + str(a)
def _worker(i, barrier, queue, gen_func, gen_args):
for x in gen_func(*gen_args):
print(f"WORKER-{i} sending item.")
queue.put((i, x))
barrier.wait()
queue.put(SENTINEL)
def parallel_gen(gen_func, gen_args_tuples):
"""Construct and yield from parallel generators
build from `gen_func(gen_args)`.
"""
gen_args_tuples = list(gen_args_tuples) # ensure list
n_gens = len(gen_args_tuples)
sentinels = [SENTINEL] * n_gens
queue = mp.SimpleQueue()
barrier = mp.Barrier(n_gens + 1) # `parties`: + 1 for parent
processes = [
mp.Process(target=_worker, args=(i, barrier, queue, gen_func, args))
for i, args in enumerate(gen_args_tuples)
]
for p in processes:
p.start()
while True:
results = [queue.get() for _ in range(n_gens)]
if results != sentinels:
results.sort()
yield tuple(r[1] for r in results) # sort and drop ids
barrier.wait() # all workers are waiting
# already, so this will unblock immediately
else:
break
for p in processes:
p.join()
if __name__ == '__main__':
for res in parallel_gen(gen_func=gen, gen_args_tuples=zip(range(4))):
print(res)
Output:
WORKER-1 sending item.
WORKER-0 sending item.
WORKER-3 sending item.
WORKER-2 sending item.
('a0', 'a1', 'a2', 'a3')
WORKER-1 sending item.
WORKER-2 sending item.
WORKER-3 sending item.
WORKER-0 sending item.
('b0', 'b1', 'b2', 'b3')
WORKER-2 sending item.
WORKER-3 sending item.
WORKER-1 sending item.
WORKER-0 sending item.
('c0', 'c1', 'c2', 'c3')
Process finished with exit code 0
I went for a little different approach, you can modify the example below accordingly.
So somewhere in the main script initialize the pool according to your needs, you need just this 2 lines
from multiprocessing import Pool
pool = Pool(processes=4)
then you can define a generator function like this:
(Note that the generators input is assumed to be any iterable containing all the generators)
def parallel_generators(generators, pool):
results = ['placeholder']
while len(results) != 0:
batch = pool.map_async(next, generators) # defines the next round of values
results = list(batch.get) # actual calculation done here
yield results
return
We define the results condition in the while loop like this because map objects with next and generators return an empty list when the generators stop producing values. So at that point we just terminate the parallel generator.
EDIT
So apparently multiproccecing pool, and map don't play good with generators making the above code not work as intended so do not use until later update.
As for the pickle error it seems some bound functions do not support pickle which is needed in the multiprocessing library in order to transfer objects and functions, for a workaround the pathos mutliprocessing library uses dill which solves the need for pickle and is an option you might want to try, searching in Stack Overflow for your error you can also find some more complicated solutions with custom code for pickling the functions needed.

Create different processes using a list of objects

I want to execute this function without having to rewrite all the code for each process.
def executeNode(node):
node.execution()
And the code that I don't feel the need to repeat n times the next one. I need to use Process not Threads.
a0 = Process(target=executeNode, args = (node1))
a1 = Process(target=executeNode, args = (node2))
a2 = Process(target=executeNode, args = (node3))
...............................
an = Process(target=executeNode, args = (nodeN))
So I decided to create a list of nodes but I don't know how to execute a process for each item (node) of the list.
sNodes = []
for i in range(0, n):
node = node("a"+ str(i), (4001 + i))
sNodes.append(node)
How can I execute a process for each item (node) of the list (sNodes).
Thank you all.
You can use a Pool:
from multiprocessing import Pool
if __name__ == '__main__':
with Pool(n) as p:
print(p.map(executeNode, sNodes))
Where n is the number of processes you want.
In case you want detached processes or you dont expect a result is better to simply use another loop:
processes = []
for node in sNodes:
p = Process(target=executeNode, args = (node1))
processes.append(p)
p.Start()
General tip: having a lot of processes will not speed up your code but make your processor start swaping and everything will be slower. Just in case you are looking for a code speedup instead of a logical architecture.
Try something like this:
from multiprocessing import Pool
process_number = 4
nodes = [...]
def execute_node(node):
print(node)
pool = Pool(processes=process_number)
pool.starmap(execute_node, [(node,) for node in nodes])
pool.close()
You will find more intel here: https://docs.python.org/3/library/multiprocessing.html

Dictionary multiprocessing

I want to parallelize the processing of a dictionary using the multiprocessing library.
My problem can be reduced to this code:
from multiprocessing import Manager,Pool
def modify_dictionary(dictionary):
if((3,3) not in dictionary):
dictionary[(3,3)]=0.
for i in range(100):
dictionary[(3,3)] = dictionary[(3,3)]+1
return 0
if __name__ == "__main__":
manager = Manager()
dictionary = manager.dict(lock=True)
jobargs = [(dictionary) for i in range(5)]
p = Pool(5)
t = p.map(modify_dictionary,jobargs)
p.close()
p.join()
print dictionary[(3,3)]
I create a pool of 5 workers, and each worker should increment dictionary[(3,3)] 100 times. So, if the locking process works correctly, I expect dictionary[(3,3)] to be 500 at the end of the script.
However; something in my code must be wrong, because this is not what I get: the locking process does not seem to be "activated" and dictionary[(3,3)] always have a valuer <500 at the end of the script.
Could you help me?
The problem is with this line:
dictionary[(3,3)] = dictionary[(3,3)]+1
Three things happen on that line:
Read the value of the dictionary key (3,3)
Increment the value by 1
Write the value back again
But the increment part is happening outside of any locking.
The whole sequence must be atomic, and must be synchronized across all processes. Otherwise the processes will interleave giving you a lower than expected total.
Holding a lock whist incrementing the value ensures that you get the total of 500 you expect:
from multiprocessing import Manager,Pool,Lock
lock = Lock()
def modify_array(dictionary):
if((3,3) not in dictionary):
dictionary[(3,3)]=0.
for i in range(100):
with lock:
dictionary[(3,3)] = dictionary[(3,3)]+1
return 0
if __name__ == "__main__":
manager = Manager()
dictionary = manager.dict(lock=True)
jobargs = [(dictionary) for i in range(5)]
p = Pool(5)
t = p.map(modify_array,jobargs)
p.close()
p.join()
print dictionary[(3,3)]
I ve managed many times to find here the correct solution to a programming difficulty I had. So I would like to contribute a little bit. Above code still has the problem of not updating right the dictionary. To have the right result you have to pass lock and correct jobargs to f. In above code you make a new dictionary in every proccess. The code I found to work fine:
from multiprocessing import Process, Manager, Pool, Lock
from functools import partial
def f(dictionary, l, k):
with l:
for i in range(100):
dictionary[3] += 1
if __name__ == "__main__":
manager = Manager()
dictionary = manager.dict()
lock = manager.Lock()
dictionary[3] = 0
jobargs = list(range(5))
pool = Pool()
func = partial(f, dictionary, lock)
t = pool.map(func, jobargs)
pool.close()
pool.join()
print(dictionary)
In the OP's code, it is locking the entire iteration. In general, you should only apply locks for the shortest time, as long as it is effective. The following code is much more efficient. You acquire the lock only to make the code atomic
def f(dictionary, l, k):
for i in range(100):
with l:
dictionary[3] += 1
Note that dictionary[3] += 1 is not atomic, so it must be locked.

How to parallel sum a loop using multiprocessing in Python

I am having difficulty understanding how to use Python's multiprocessing module.
I have a sum from 1 to n where n=10^10, which is too large to fit into a list, which seems to be the thrust of many examples online using multiprocessing.
Is there a way to "split up" the range into segments of a certain size and then perform the sum for each segment?
For instance
def sum_nums(low,high):
result = 0
for i in range(low,high+1):
result += i
return result
And I want to compute sum_nums(1,10**10) by breaking it up into many sum_nums(1,1000) + sum_nums(1001,2000) + sum_nums(2001,3000)... and so on. I know there is a close-form n(n+1)/2 but pretend we don't know that.
Here is what I've tried
import multiprocessing
def sum_nums(low,high):
result = 0
for i in range(low,high+1):
result += i
return result
if __name__ == "__main__":
n = 1000
procs = 2
sizeSegment = n/procs
jobs = []
for i in range(0, procs):
process = multiprocessing.Process(target=sum_nums, args=(i*sizeSegment+1, (i+1)*sizeSegment))
jobs.append(process)
for j in jobs:
j.start()
for j in jobs:
j.join()
#where is the result?
I find the usage of multiprocess.Pool and map() much more simple
Using your code:
from multiprocessing import Pool
def sum_nums(args):
low = int(args[0])
high = int(args[1])
return sum(range(low,high+1))
if __name__ == "__main__":
n = 1000
procs = 2
sizeSegment = n/procs
# Create size segments list
jobs = []
for i in range(0, procs):
jobs.append((i*sizeSegment+1, (i+1)*sizeSegment))
pool = Pool(procs).map(sum_nums, jobs)
result = sum(pool)
>>> print result
>>> 500500
You can do this sum without multiprocessing at all, and it's probably simpler, if not faster, to just use generators.
# prepare a generator of generators each at 1000 point intervals
>>> xr = (xrange(1000*i+1,i*1000+1001) for i in xrange(10000000))
>>> list(xr)[:3]
[xrange(1, 1001), xrange(1001, 2001), xrange(2001, 3001)]
# sum, using two map functions
>>> xr = (xrange(1000*i+1,i*1000+1001) for i in xrange(10000000))
>>> sum(map(sum, map(lambda x:x, xr)))
50000000005000000000L
However, if you want to use multiprocessing, you can also do this too. I'm using a fork of multiprocessing that is better at serialization (but otherwise, not really different).
>>> xr = (xrange(1000*i+1,i*1000+1001) for i in xrange(10000000))
>>> import pathos
>>> mmap = pathos.multiprocessing.ProcessingPool().map
>>> tmap = pathos.multiprocessing.ThreadingPool().map
>>> sum(tmap(sum, mmap(lambda x:x, xr)))
50000000005000000000L
The version w/o multiprocessing is faster and takes about a minute on my laptop. The multiprocessing version takes a few minutes due to the overhead of spawning multiple python processes.
If you are interested, get pathos here: https://github.com/uqfoundation
First, the best way to get around the memory issue is to use an iterator/generator instead of a list:
def sum_nums(low, high):
result = 0
for i in xrange(low, high+1):
result += 1
return result
in python3, range() produces an iterator, so this is only needed in python2
Now, where multiprocessing comes in is when you want to split up the processing to different processes or CPU cores. If you don't need to control the individual workers than the easiest method is to use a process pool. This will let you map a function to the pool and get the output. You can alternatively use apply_async to apply jobs to the pool one at a time and get a delayed result which you can get with .get():
import multiprocessing
from multiprocessing import Pool
from time import time
def sum_nums(low, high):
result = 0
for i in xrange(low, high+1):
result += i
return result
# map requires a function to handle a single argument
def sn((low,high)):
return sum_nums(low, high)
if __name__ == '__main__':
#t = time()
# takes forever
#print sum_nums(1,10**10)
#print '{} s'.format(time() -t)
p = Pool(4)
n = int(1e8)
r = range(0,10**10+1,n)
results = []
# using apply_async
t = time()
for arg in zip([x+1 for x in r],r[1:]):
results.append(p.apply_async(sum_nums, arg))
# wait for results
print sum(res.get() for res in results)
print '{} s'.format(time() -t)
# using process pool
t = time()
print sum(p.map(sn, zip([x+1 for x in r], r[1:])))
print '{} s'.format(time() -t)
On my machine, just calling sum_nums with 10**10 takes almost 9 minutes, but using a Pool(8) and n=int(1e8) reduces this to just over a minute.

Execute a list of process without multiprocessing pool map

import multiprocessing as mp
if __name__ == '__main__':
#pool = mp.Pool(M)
p1 = mp.Process(target= target1, args= (arg1,))
p2 = mp.Process(target= target2, args= (arg1,))
...
p9 = mp.Process(target= target9, args= (arg9,))
p10 = mp.Process(target= target10, args= (arg10,))
...
pN = mp.Process(target= targetN, args= (argN,))
processList = [p1, p2, .... , p9, p10, ... ,pN]
I have N different target functions which consume unequal non-trivial amount of time to execute.
I am looking for a way to execute them in parallel such that M (1 < M < N) processes are running simultaneously. And as soon as a process is finished next process should start from the list, until all the processes in processList are completed.
As I am not calling the same target function, I could not use Pool.
I considered doing something like this:
for i in range(0, N, M):
limit = i + M
if(limit > N):
limit = N
for p in processList[i:limit]:
p.join()
Since my target functions consume unequal time to execute, this method is not really efficient.
Any suggestions? Thanks in advance.
EDIT:
Question title has been changed to 'Execute a list of process without multiprocessing pool map' from 'Execute a list of process without multiprocessing pool'.
You can use proccess Pool:
#!/usr/bin/env python
# coding=utf-8
from multiprocessing import Pool
import random
import time
def target_1():
time.sleep(random.uniform(0.5, 2))
print('done target 1')
def target_2():
time.sleep(random.uniform(0.5, 2))
print('done target 1')
def target_3():
time.sleep(random.uniform(0.5, 2))
print('done target 1')
def target_4():
time.sleep(random.uniform(0.5, 2))
print('done target 1')
pool = Pool(2) # maximum two processes at time.
pool.apply_async(target_1)
pool.apply_async(target_2)
pool.apply_async(target_3)
pool.apply_async(target_4)
pool.close()
pool.join()
Pool is created specifically for what you need to do - execute many tasks in limited number of processes.
I also suggest you take a look at concurrent.futures library and it's backport to Python 2.7. It has a ProcessPoolExecutor, which has roughly same capabilities, but it's methods returns Future objects, and they has a nicer API.
Here is a way to do it in Python 3.4, which could be adapted for Python 2.7 :
targets_with_args = [
(target1, arg1),
(target2, arg2),
(target3, arg3),
...
]
with concurrent.futures.ProcessPoolExecutor(max_workers=20) as executor:
futures = [executor.submit(target, arg) for target, arg in targets_with_args]
results = [future.result() for future in concurrent.futures.as_completed(futures)]
I would use a Queue. adding processes to it from processList, and as soon as a process is finished i would remove it from the queue and add another one.
a pseudo code will look like:
from Queue import Queue
q = Queue(m)
# add first process to queue
i = 0
q.put(processList[i])
processList[i].start()
i+=1
while not q.empty():
p=q.get()
# check if process is finish. if not return it to the queue for later checking
if p.is_alive():
p.put(t)
# add another process if there is space and there are more processes to add
if not q.full() and i < len(processList):
q.put(processList[i])
processList[i].start()
i+=1
A simple solution would be to wrap the functions target{1,2,...N} into a single function forward_to_target that forwards to the appropriate target{1,2,...N} function according to the argument that is passed in. If you cannot infer the appropriate target function from the arguments you currently use, replace each argument with a tuple (argX, X), then in the forward_to_target function unpack the tuple and forward to the appropriate function indicated by the X.
You could have two lists of targets and arguments, zip the two together - and send them to a runner function (here it's run_target_on_args):
#!/usr/bin/env python
import multiprocessing as mp
# target functions
targets = [len, str, len, zip]
# arguments for each function
args = [["arg1"], ["arg2"], ["arg3"], [["arg5"], ["arg6"]]]
# applies target function on it's arguments
def run_target_on_args(target_args):
return target_args[0](*target_args[1])
pool = mp.Pool()
print pool.map(run_target_on_args, zip(targets, args))

Categories