How do I median bin a 2D image in python? - python

I have a 2D numarray, of size WIDTHxHEIGHT. I would like to bin the array by finding the median of each bin so that the resultant array is WIDTH/binsize x HEIGHT/binsize. Assume that both WIDTH and HEIGHT are divisible by binsize.
Edit: An example is given in the attached image.
I have found solutions where the binned array values are the sum or average of the individual elements in each bin:
How to bin a 2D array in numpy?
However, if I want to do a median combine of elements in each bin, I haven't been able to figure out a solution. Your help would be much appreciated!
Edit: image added
An example of the initial array and desired resultant median binned array

So you are looking for median over strided reshape:
import numpy as np
a = np.arange(24).reshape(4,6)
def median_binner(a,bin_x,bin_y):
m,n = np.shape(a)
strided_reshape = np.lib.stride_tricks.as_strided(a,shape=(bin_x,bin_y,m//bin_x,n//bin_y),strides = a.itemsize*np.array([(m / bin_x) * n, (n / bin_y), n, 1]))
return np.array([np.median(col) for row in strided_reshape for col in row]).reshape(bin_x,bin_y)
print "Original Matrix:"
print a
print "\n"
bin_tester1 = median_binner(a,2,3)
print "2x3 median bin :"
print bin_tester1
print "\n"
bin_tester2 = median_binner(a,2,2)
print "2x2 median bin :"
print bin_tester2
result:
Original Matrix:
[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]]
2x3 median bin :
[[ 3.5 5.5 7.5]
[ 15.5 17.5 19.5]]
2x2 median bin :
[[ 4. 7.]
[ 16. 19.]]
Read this in order to completely understand the following line in the code:
strided_reshape = np.lib.stride_tricks.as_strided(a,shape=(bin_x,bin_y,m//bin_x,n//bin_y),strides = a.itemsize*np.array([(m / bin_x) * n, (n / bin_y), n, 1])) .

I was dealing with the same issue. I have found the answer of Kennet Celeste very useful but there are some caveats. First the stride reshape is fast but the loop then is slow. The trick is to get all the data you compute median from to the same location in the memory and use somehow vectorized numpy operation.
If you don't want to fiddle with the stride reshape you can go for np.swapaxes function. So let's say I have an array X of the size xdim x ydim and want to bin it by window bin_x x bin_y
import numpy as np
#Some sample values
xdim= 5039
ydim = 6637
bin_x = 5
bin_y = 7
X = np.random.rand(ydim, xdim)
#now compute reduced dimensions so that bin_x divides xdim_red
xdim_red = xdim - xdim % bin_x
ydim_red = ydim - ydim % bin_y
#and dimensions after binning
xdim_bin = xdim_red // bin_x
ydim_bin = ydim_red // bin_y
#crop X to the end of the indices
X = X[0:ydim_red, 0:xdim_red]
#Here alternative to stride reshape
X.shape = (ydim_bin, bin_y, xdim_bin, bin_x)
X_reshaped = X.swapaxes(1, 2)
#The following can be done on stride_reshape array as well and finally joins the chunks of the memory we need to get together
X_reshaped = X_reshaped.reshape((ydim_bin, xdim_bin, bin_x*bin_y))
#There could be faster implementation but this at least use batc
g = np.median(X_reshaped, axis=-1)

Related

caculating the sum of elements around an element in a numpy array [duplicate]

I am trying to perform a 2d convolution in python using numpy
I have a 2d array as follows with kernel H_r for the rows and H_c for the columns
data = np.zeros((nr, nc), dtype=np.float32)
#fill array with some data here then convolve
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
data = data.astype(np.uint8);
It does not produce the output that I was expecting, does this code look OK, I think the problem is with the casting from float32 to 8bit. Whats the best way to do this
Thanks
Maybe it is not the most optimized solution, but this is an implementation I used before with numpy library for Python:
def convolution2d(image, kernel, bias):
m, n = kernel.shape
if (m == n):
y, x = image.shape
y = y - m + 1
x = x - m + 1
new_image = np.zeros((y,x))
for i in range(y):
for j in range(x):
new_image[i][j] = np.sum(image[i:i+m, j:j+m]*kernel) + bias
return new_image
I hope this code helps other guys with the same doubt.
Regards.
Edit [Jan 2019]
#Tashus comment bellow is correct, and #dudemeister's answer is thus probably more on the mark. The function he suggested is also more efficient, by avoiding a direct 2D convolution and the number of operations that would entail.
Possible Problem
I believe you are doing two 1d convolutions, the first per columns and the second per rows, and replacing the results from the first with the results of the second.
Notice that numpy.convolve with the 'same' argument returns an array of equal shape to the largest one provided, so when you make the first convolution you already populated the entire data array.
One good way to visualize your arrays during these steps is to use Hinton diagrams, so you can check which elements already have a value.
Possible Solution
You can try to add the results of the two convolutions (use data[:,c] += .. instead of data[:,c] = on the second for loop), if your convolution matrix is the result of using the one dimensional H_r and H_c matrices like so:
Another way to do that would be to use scipy.signal.convolve2d with a 2d convolution array, which is probably what you wanted to do in the first place.
Since you already have your kernel separated you should simply use the sepfir2d function from scipy:
from scipy.signal import sepfir2d
convolved = sepfir2d(data, H_r, H_c)
On the other hand, the code you have there looks all right ...
I checked out many implementations and found none for my purpose, which should be really simple. So here is a dead-simple implementation with for loop
def convolution2d(image, kernel, stride, padding):
image = np.pad(image, [(padding, padding), (padding, padding)], mode='constant', constant_values=0)
kernel_height, kernel_width = kernel.shape
padded_height, padded_width = image.shape
output_height = (padded_height - kernel_height) // stride + 1
output_width = (padded_width - kernel_width) // stride + 1
new_image = np.zeros((output_height, output_width)).astype(np.float32)
for y in range(0, output_height):
for x in range(0, output_width):
new_image[y][x] = np.sum(image[y * stride:y * stride + kernel_height, x * stride:x * stride + kernel_width] * kernel).astype(np.float32)
return new_image
It might not be the most optimized solution either, but it is approximately ten times faster than the one proposed by #omotto and it only uses basic numpy function (as reshape, expand_dims, tile...) and no 'for' loops:
def gen_idx_conv1d(in_size, ker_size):
"""
Generates a list of indices. This indices correspond to the indices
of a 1D input tensor on which we would like to apply a 1D convolution.
For instance, with a 1D input array of size 5 and a kernel of size 3, the
1D convolution product will successively looks at elements of indices [0,1,2],
[1,2,3] and [2,3,4] in the input array. In this case, the function idx_conv1d(5,3)
outputs the following array: array([0,1,2,1,2,3,2,3,4]).
args:
in_size: (type: int) size of the input 1d array.
ker_size: (type: int) kernel size.
return:
idx_list: (type: np.array) list of the successive indices of the 1D input array
access to the 1D convolution algorithm.
example:
>>> gen_idx_conv1d(in_size=5, ker_size=3)
array([0, 1, 2, 1, 2, 3, 2, 3, 4])
"""
f = lambda dim1, dim2, axis: np.reshape(np.tile(np.expand_dims(np.arange(dim1),axis),dim2),-1)
out_size = in_size-ker_size+1
return f(ker_size, out_size, 0)+f(out_size, ker_size, 1)
def repeat_idx_2d(idx_list, nbof_rep, axis):
"""
Repeats an array of indices (idx_list) a number of time (nbof_rep) "along" an axis
(axis). This function helps to browse through a 2d array of size
(len(idx_list),nbof_rep).
args:
idx_list: (type: np.array or list) a 1D array of indices.
nbof_rep: (type: int) number of repetition.
axis: (type: int) axis "along" which the repetition will be applied.
return
idx_list: (type: np.array) a 1D array of indices of size len(idx_list)*nbof_rep.
example:
>>> a = np.array([0, 1, 2])
>>> repeat_idx_2d(a, 3, 0) # repeats array 'a' 3 times along 'axis' 0
array([0, 0, 0, 1, 1, 1, 2, 2, 2])
>>> repeat_idx_2d(a, 3, 1) # repeats array 'a' 3 times along 'axis' 1
array([0, 1, 2, 0, 1, 2, 0, 1, 2])
>>> b = np.reshape(np.arange(3*4), (3,4))
>>> b[repeat_idx_2d(np.arange(3), 4, 0), repeat_idx_2d(np.arange(4), 3, 1)]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
"""
assert axis in [0,1], "Axis should be equal to 0 or 1."
tile_axis = (nbof_rep,1) if axis else (1,nbof_rep)
return np.reshape(np.tile(np.expand_dims(idx_list, 1),tile_axis),-1)
def conv2d(im, ker):
"""
Performs a 'valid' 2D convolution on an image. The input image may be
a 2D or a 3D array.
The output image first two dimensions will be reduced depending on the
convolution size.
The kernel may be a 2D or 3D array. If 2D, it will be applied on every
channel of the input image. If 3D, its last dimension must match the
image one.
args:
im: (type: np.array) image (2D or 3D).
ker: (type: np.array) convolution kernel (2D or 3D).
returns:
im: (type: np.array) convolved image.
example:
>>> im = np.reshape(np.arange(10*10*3),(10,10,3))/(10*10*3) # 3D image
>>> ker = np.array([[0,1,0],[-1,0,1],[0,-1,0]]) # 2D kernel
>>> conv2d(im, ker) # 3D array of shape (8,8,3)
"""
if len(im.shape)==2: # if the image is a 2D array, it is reshaped by expanding the last dimension
im = np.expand_dims(im,-1)
im_x, im_y, im_w = im.shape
if len(ker.shape)==2: # if the kernel is a 2D array, it is reshaped so it will be applied to all of the image channels
ker = np.tile(np.expand_dims(ker,-1),[1,1,im_w]) # the same kernel will be applied to all of the channels
assert ker.shape[-1]==im.shape[-1], "Kernel and image last dimension must match."
ker_x = ker.shape[0]
ker_y = ker.shape[1]
# shape of the output image
out_x = im_x - ker_x + 1
out_y = im_y - ker_y + 1
# reshapes the image to (out_x, ker_x, out_y, ker_y, im_w)
idx_list_x = gen_idx_conv1d(im_x, ker_x) # computes the indices of a 1D conv (cf. idx_conv1d doc)
idx_list_y = gen_idx_conv1d(im_y, ker_y)
idx_reshaped_x = repeat_idx_2d(idx_list_x, len(idx_list_y), 0) # repeats the previous indices to be used in 2D (cf. repeat_idx_2d doc)
idx_reshaped_y = repeat_idx_2d(idx_list_y, len(idx_list_x), 1)
im_reshaped = np.reshape(im[idx_reshaped_x, idx_reshaped_y, :], [out_x, ker_x, out_y, ker_y, im_w]) # reshapes
# reshapes the 2D kernel
ker = np.reshape(ker,[1, ker_x, 1, ker_y, im_w])
# applies the kernel to the image and reduces the dimension back to the one of original input image
return np.squeeze(np.sum(im_reshaped*ker, axis=(1,3)))
I tried to add a lot of comments to explain the method but the global idea is to reshape the 3D input image to a 5D one of shape (output_image_height, kernel_height, output_image_width, kernel_width, output_image_channel) and then to apply the kernel directly using the basic array multiplication. Of course, this methods is then using more memory (during the execution the size of the image is thus multiply by kernel_height*kernel_width) but it is faster.
To do this reshape step, I 'over-used' the indexing methods of numpy arrays, especially, the possibility of giving a numpy array as indices into a numpy array.
This methods could also be used to re-code the 2D convolution product in Pytorch or Tensorflow using the base math functions but I have no doubt in saying that it will be slower than the existing nn.conv2d operator...
I really enjoyed coding this method by only using the numpy basic tools.
One of the most obvious is to hard code the kernel.
img = img.convert('L')
a = np.array(img)
out = np.zeros([a.shape[0]-2, a.shape[1]-2], dtype='float')
out += a[:-2, :-2]
out += a[1:-1, :-2]
out += a[2:, :-2]
out += a[:-2, 1:-1]
out += a[1:-1,1:-1]
out += a[2:, 1:-1]
out += a[:-2, 2:]
out += a[1:-1, 2:]
out += a[2:, 2:]
out /= 9.0
out = out.astype('uint8')
img = Image.fromarray(out)
This example does a box blur 3x3 completely unrolled. You can multiply the values where you have a different value and divide them by a different amount. But, if you honestly want the quickest and dirtiest method this is it. I think it beats Guillaume Mougeot's method by a factor of like 5. His method beating the others by a factor of 10.
It may lose a few steps if you're doing something like a gaussian blur. and need to multiply some stuff.
Try to first round and then cast to uint8:
data = data.round().astype(np.uint8);
I wrote this convolve_stride which uses numpy.lib.stride_tricks.as_strided. Moreover it supports both strides and dilation. It is also compatible to tensor with order > 2.
import numpy as np
from numpy.lib.stride_tricks import as_strided
from im2col import im2col
def conv_view(X, F_s, dr, std):
X_s = np.array(X.shape)
F_s = np.array(F_s)
dr = np.array(dr)
Fd_s = (F_s - 1) * dr + 1
if np.any(Fd_s > X_s):
raise ValueError('(Dilated) filter size must be smaller than X')
std = np.array(std)
X_ss = np.array(X.strides)
Xn_s = (X_s - Fd_s) // std + 1
Xv_s = np.append(Xn_s, F_s)
Xv_ss = np.tile(X_ss, 2) * np.append(std, dr)
return as_strided(X, Xv_s, Xv_ss, writeable=False)
def convolve_stride(X, F, dr=None, std=None):
if dr is None:
dr = np.ones(X.ndim, dtype=int)
if std is None:
std = np.ones(X.ndim, dtype=int)
if not (X.ndim == F.ndim == len(dr) == len(std)):
raise ValueError('X.ndim, F.ndim, len(dr), len(std) must be the same')
Xv = conv_view(X, F.shape, dr, std)
return np.tensordot(Xv, F, axes=X.ndim)
%timeit -n 100 -r 10 convolve_stride(A, F)
#31.2 ms ± 1.31 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
Super simple and fast convolution using only basic numpy:
import numpy as np
def conv2d(image, kernel):
# apply kernel to image, return image of the same shape
# assume both image and kernel are 2D arrays
# kernel = np.flipud(np.fliplr(kernel)) # optionally flip the kernel
k = kernel.shape[0]
width = k//2
# place the image inside a frame to compensate for the kernel overlap
a = framed(image, width)
b = np.zeros(image.shape) # fill the output array with zeros; do not use np.empty()
# shift the image around each pixel, multiply by the corresponding kernel value and accumulate the results
for p, dp, r, dr in [(i, i + image.shape[0], j, j + image.shape[1]) for i in range(k) for j in range(k)]:
b += a[p:dp, r:dr] * kernel[p, r]
# or just write two nested for loops if you prefer
# np.clip(b, 0, 255, out=b) # optionally clip values exceeding the limits
return b
def framed(image, width):
a = np.zeros((image.shape[0]+2*width, image.shape[1]+2*width))
a[width:-width, width:-width] = image
# alternatively fill the frame with ones or copy border pixels
return a
Run it:
Image.fromarray(conv2d(image, kernel).astype('uint8'))
Instead of sliding the kernel along the image and computing the transformation pixel by pixel, create a series of shifted versions of the image corresponding to each element in the kernel and apply the corresponding kernel value to each of the shifted image versions.
This is probably the fastest you can get using just basic numpy; the speed is already comparable to C implementation of scipy convolve2d and better than fftconvolve. The idea is similar to #Tatarize. This example works only for one color component; for RGB just repeat for each (or modify the algorithm accordingly).
Typically, Convolution 2D is a misnomer. Ideally, under the hood,
whats being done is a correlation of 2 matrices.
pad == same
returns the output as the same as input dimension
It can also take asymmetric images. In order to perform correlation(convolution in deep learning lingo) on a batch of 2d matrices, one can iterate over all the channels, calculate the correlation for each of the channel slices with the respective filter slice.
For example: If image is (28,28,3) and filter size is (5,5,3) then take each of the 3 slices from the image channel and perform the cross correlation using the custom function above and stack the resulting matrix in the respective dimension of the output.
def get_cross_corr_2d(W, X, pad = 'valid'):
if(pad == 'same'):
pr = int((W.shape[0] - 1)/2)
pc = int((W.shape[1] - 1)/2)
conv_2d = np.zeros((X.shape[0], X.shape[1]))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.inner(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
else:
pr = W.shape[0] - 1
pc = W.shape[1] - 1
conv_2d = np.zeros((X.shape[0] - W.shape[0] + 2*pr + 1,
X.shape[1] - W.shape[1] + 2*pc + 1))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.multiply(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
This code incorrect:
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
See Nussbaumer transformation from multidimentional convolution to one dimentional.

How to quickly sum a range of indexes in multiple arrays in Python?

Im trying to reconstruct a HDR image using an equation where i have to sum across j values (0-15) in both the numerator and the denominator for each i value. Is there a faster way to do this? Using perhaps np.sum?
g is an 1D array thats 255 long that remaps all pixel values.
lEks is log exposure times for the 15 images
Z is an array with size [95488, 15], first dimension is pixel index and second is image number
def genHDR(Z,g,lEks):
Zi, Zj = Z.shape #[95488, 15]
HDRimage= np.zeros(Zi)
for i in range(Zi):
numerator = 0
denominator = 0
for j in range(Zj):
numerator +=(Z[i,j])*(g[Z[i,j]] - lEks[j])
denominator +=(Z[i,j])
HDRimage[i] = numerator/denominator
return HDRimage
Probably the best way to do this would be to use np.Array.sum(axis=1). Assuming that the g(Z[i,j]) call is valid. You actually dont even need any loops:
import numpy as np
Z = np.random.randint(0,255,(10,15))
g=np.random.randint(0,10,(256))
lEks = np.random.rand((15))
def genHDR(Z,g,lEks):
numerator = (Z*(g[Z]-lEks.view().reshape((1,)+ lEks.shape))).sum(axis=1)
denominator = Z.sum(axis=1)
HDRimage = numerator/denominator
return HDRimage
#Dillman beat me to it. Maybe you can still use the below as to how to construct this. I like to think in steps.
import numpy as np
Z= np.random.randint(low=0,high=256,size=(6,3)) # assume just 3 images with 6 pixels each
print(f' Z= {Z}')
lEks=np.random.rand(3)
print(f'lEks = {lEks}')
g0=np.arange(255) #some example mapping; here from byte to half byte
g= g0//2 # // integer division
npxl,nimage=np.shape(Z)
print(f'npxl={npxl} nimage={nimage}')
# vectorize just one operation at first, easier to visualize
hdr=np.zeros(npxl)
for i in np.arange(npxl):
#print(Z[i])
denom=np.sum(Z[i])
hdr[i]= np.sum(Z[i] *(g[Z[i]]- lEks))/denom
# Z[i] is just a vector of length 3, just like lEks
print(hdr)
# this would do it, but still be slower than necessary, as your remaining loop has many more elements that
# the one we dealt with
# now vectorize the other coordinate (remove the remaining for-loop)
hdr=np.zeros(npxl)
hdr= np.sum(Z *(g[Z]- lEks), axis=1)/ np.sum(Z,axis=1) # which axis to sum over is critical
print(hdr)
#final code
def genHDR(Z, g, lEks):
npxl,nimage=np.shape(Z)
hdr=np.zeros(npxl)
hdr= np.sum(Z *(g[Z]- lEks), axis=1)/ np.sum(Z,axis=1)
return hdr
print(genHDR(Z,g,lEks))
output:
Z= [[199 101 67]
[134 16 137]
[219 5 135]
[153 19 17]
[238 41 120]
[ 93 50 179]]
lEks = [0.57778608 0.18113957 0.85257974]
npxl=6 nimage=3
[72.94714613 63.50130665 91.04028102 62.58551969 90.46303414 65.97390417]
[72.94714613 63.50130665 91.04028102 62.58551969 90.46303414 65.97390417]
[72.94714613 63.50130665 91.04028102 62.58551969 90.46303414 65.97390417]

Translating Matlab (Octave) group coloring code into python (numpy, pyplot)

I want to translate the following group coloring octave function to python and use it with pyplot.
Function input:
x - Data matrix (m x n)
a - A parameter.
index - A vector of size "m" with values in range [: a]
(For example if a = 4, index can be [random.choice(range(4)) for i in range(m)]
The values in "index" indicate the number of the group the "m"th data point belongs to.
The function should plot all the data points from x and color them in different colors (Number of different colors is "a").
The function in octave:
p = hsv(a); % This is a x 3 metrix
colors = p(index, :); % ****This is m x 3 metrix****
scatter(X(:,1), X(:,2), 10, colors);
I couldn't find a function like hsv in python, so I wrote it myself (I think I did..):
p = colors.hsv_to_rgb(numpy.column_stack((
numpy.linspace(0, 1, a), numpy.ones((a ,2)) )) )
But I can't figure out how to do the matrix selection p(index, :) in python (numpy).
Specially because the size of "index" is bigger then "a".
Thanks in advance for your help.
So, you want to take an m x 3 of HSV values, and convert each row to RGB?
import numpy as np
import colorsys
mymatrix = np.matrix([[11,12,13],
[21,22,23],
[31,32,33]])
def to_hsv(x):
return colorsys.rgb_to_hsv(*x)
#Apply the to_hsv function to each matrix row.
print np.apply_along_axis(to_hsv, axis=1, arr=mymatrix)
This produces:
[[ 0.5 0. 13. ]
[ 0.5 0. 23. ]
[ 0.5 0. 33. ]]
Follow through on your comment:
If I understand you have a matrix p that is an a x 3 matrix, and you want to randomly select rows from the matrix over and over again, until you have a new matrix that is m x 3?
Ok. Let's say you have a matrix p defined as follows:
a = 5
p = np.random.randint(5, size=(a, 3))
Now, make a list of random integers between the range 0 -> 3 (index starts at 0 and ends to a-1), That is m in length:
m = 20
index = np.random.randint(a, size=m)
Now access the right indexes and plug them into a new matrix:
p_prime = np.matrix([p[i] for i in index])
Produces a 20 x 3 matrix.

Python: how to make an histogram with equally *sized* bins

I have a set of data, and want to make an histogram of it. I need the bins to have the same size, by which I mean that they must contain the same number of objects, rather than the more common (numpy.histogram) problem of having equally spaced bins.
This will naturally come at the expenses of the bins widths, which can - and in general will - be different.
I will specify the number of desired bins and the data set, obtaining the bins edges in return.
Example:
data = numpy.array([1., 1.2, 1.3, 2.0, 2.1, 2.12])
bins_edges = somefunc(data, nbins=3)
print(bins_edges)
>> [1.,1.3,2.1,2.12]
So the bins all contain 2 points, but their widths (0.3, 0.8, 0.02) are different.
There are two limitations:
- if a group of data is identical, the bin containing them could be bigger.
- if there are N data and M bins are requested, there will be N/M bins plus one if N%M is not 0.
This piece of code is some cruft I've written, which worked nicely for small data sets. What if I have 10**9+ points and want to speed up the process?
1 import numpy as np
2
3 def def_equbin(in_distr, binsize=None, bin_num=None):
4
5 try:
6
7 distr_size = len(in_distr)
8
9 bin_size = distr_size / bin_num
10 odd_bin_size = distr_size % bin_num
11
12 args = in_distr.argsort()
13
14 hist = np.zeros((bin_num, bin_size))
15
16 for i in range(bin_num):
17 hist[i, :] = in_distr[args[i * bin_size: (i + 1) * bin_size]]
18
19 if odd_bin_size == 0:
20 odd_bin = None
21 bins_limits = np.arange(bin_num) * bin_size
22 bins_limits = args[bins_limits]
23 bins_limits = np.concatenate((in_distr[bins_limits],
24 [in_distr[args[-1]]]))
25 else:
26 odd_bin = in_distr[args[bin_num * bin_size:]]
27 bins_limits = np.arange(bin_num + 1) * bin_size
28 bins_limits = args[bins_limits]
29 bins_limits = in_distr[bins_limits]
30 bins_limits = np.concatenate((bins_limits, [in_distr[args[-1]]]))
31
32 return (hist, odd_bin, bins_limits)
Using your example case (bins of 2 points, 6 total data points):
from scipy import stats
bin_edges = stats.mstats.mquantiles(data, [0, 2./6, 4./6, 1])
>> array([1. , 1.24666667, 2.05333333, 2.12])
I would like to mention also the existence of pandas.qcut, which does equi-populated binning in quite an efficient way. In your case it would work something like
data = np.array([1., 1.2, 1.3, 2.0, 2.1, 2.12])
# parameter q specifies the number of bins
qc = pd.qcut(data, q=3, precision=1)
# bin definition
bins = qc.categories
print(bins)
>> Index(['[1, 1.3]', '(1.3, 2.03]', '(2.03, 2.1]'], dtype='object')
# bin corresponding to each point in data
codes = qc.codes
print(codes)
>> array([0, 0, 1, 1, 2, 2], dtype=int8)
Update for skewed distributions :
I came across the same problem as #astabada, wanting to create bins each containing an equal number of samples. When applying the solution proposed #aganders3, I found that it didn't work particularly well for skewed distributions. In the case of skewed data (for example something with a whole lot of zeros), stats.mstats.mquantiles for a predefined number of quantiles will not guarantee an equal number of samples in each bin. You will get bin edges that look like this :
[0. 0. 4. 9.]
In which case the first bin will be empty.
In order to deal with skewed cases, I created a function that calls stats.mstats.mquantiles and then dynamically modifies the number of bins if samples are not equal within a certain tolerance (30% of the smallest sample size in the example code). If samples are not equal between bins, the code reduces the number of equally-spaced quantiles by 1 and calls stats.mstats.mquantiles again until sample sizes are equal or only one bin exists.
I hard coded the tolerance in the example, but this could be modified to a keyword argument if desired.
I also prefer giving the number of equally spaced quantiles as an argument to my function instead of giving user defined quantiles to stats.mstats.mquantiles in order to reduce accidental errors (i.e. something like [0., 0.25, 0.7, 1.]).
Here's the code :
import numpy as np
from scipy import stats
def equibins(dat, binnum, **kwargs):
numin = binnum
while numin>1.:
qtls = np.linspace(0.,1.0,num=numin,endpoint=False)
ebins =stats.mstats.mquantiles(dat,qtls,alphap=kwargs['alpha'],betap=kwargs['beta'])
allhist, allbin = np.histogram(dat, bins = ebins)
if (np.unique(ebins).shape!=ebins.shape or tolerence(allhist,0.3)==False) and numin>2:
numin= numin-1
del qtls, ebins
else:
numin=0
return ebins
def tolerence(narray, percent):
if percent>1.0:
per = percent/100.
else:
per = percent
lev_tol = per*narray.min()
tolerate = np.all(narray[1:]-narray[0]<lev_tol)
return tolerate
Just sort the data, and divide it into fixed bins by length! Obviously you can never divide into exactly equally populated bins, if the number of samples does not divide exactly by the number of bins.
import math
import numpy as np
data = np.array([2,3,5,6,8,5,5,6,3,2,3,7,8,9,8,6,6,8,9,9,0,7,5,3,3,4,5,6,7])
data_sorted = np.sort(data)
nbins = 3
step = math.ceil(len(data_sorted)//nbins+1)
binned_data = []
for i in range(0,len(data_sorted),step):
binned_data.append(data_sorted[i:i+step])

2d convolution using python and numpy

I am trying to perform a 2d convolution in python using numpy
I have a 2d array as follows with kernel H_r for the rows and H_c for the columns
data = np.zeros((nr, nc), dtype=np.float32)
#fill array with some data here then convolve
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
data = data.astype(np.uint8);
It does not produce the output that I was expecting, does this code look OK, I think the problem is with the casting from float32 to 8bit. Whats the best way to do this
Thanks
Maybe it is not the most optimized solution, but this is an implementation I used before with numpy library for Python:
def convolution2d(image, kernel, bias):
m, n = kernel.shape
if (m == n):
y, x = image.shape
y = y - m + 1
x = x - m + 1
new_image = np.zeros((y,x))
for i in range(y):
for j in range(x):
new_image[i][j] = np.sum(image[i:i+m, j:j+m]*kernel) + bias
return new_image
I hope this code helps other guys with the same doubt.
Regards.
Edit [Jan 2019]
#Tashus comment bellow is correct, and #dudemeister's answer is thus probably more on the mark. The function he suggested is also more efficient, by avoiding a direct 2D convolution and the number of operations that would entail.
Possible Problem
I believe you are doing two 1d convolutions, the first per columns and the second per rows, and replacing the results from the first with the results of the second.
Notice that numpy.convolve with the 'same' argument returns an array of equal shape to the largest one provided, so when you make the first convolution you already populated the entire data array.
One good way to visualize your arrays during these steps is to use Hinton diagrams, so you can check which elements already have a value.
Possible Solution
You can try to add the results of the two convolutions (use data[:,c] += .. instead of data[:,c] = on the second for loop), if your convolution matrix is the result of using the one dimensional H_r and H_c matrices like so:
Another way to do that would be to use scipy.signal.convolve2d with a 2d convolution array, which is probably what you wanted to do in the first place.
Since you already have your kernel separated you should simply use the sepfir2d function from scipy:
from scipy.signal import sepfir2d
convolved = sepfir2d(data, H_r, H_c)
On the other hand, the code you have there looks all right ...
I checked out many implementations and found none for my purpose, which should be really simple. So here is a dead-simple implementation with for loop
def convolution2d(image, kernel, stride, padding):
image = np.pad(image, [(padding, padding), (padding, padding)], mode='constant', constant_values=0)
kernel_height, kernel_width = kernel.shape
padded_height, padded_width = image.shape
output_height = (padded_height - kernel_height) // stride + 1
output_width = (padded_width - kernel_width) // stride + 1
new_image = np.zeros((output_height, output_width)).astype(np.float32)
for y in range(0, output_height):
for x in range(0, output_width):
new_image[y][x] = np.sum(image[y * stride:y * stride + kernel_height, x * stride:x * stride + kernel_width] * kernel).astype(np.float32)
return new_image
It might not be the most optimized solution either, but it is approximately ten times faster than the one proposed by #omotto and it only uses basic numpy function (as reshape, expand_dims, tile...) and no 'for' loops:
def gen_idx_conv1d(in_size, ker_size):
"""
Generates a list of indices. This indices correspond to the indices
of a 1D input tensor on which we would like to apply a 1D convolution.
For instance, with a 1D input array of size 5 and a kernel of size 3, the
1D convolution product will successively looks at elements of indices [0,1,2],
[1,2,3] and [2,3,4] in the input array. In this case, the function idx_conv1d(5,3)
outputs the following array: array([0,1,2,1,2,3,2,3,4]).
args:
in_size: (type: int) size of the input 1d array.
ker_size: (type: int) kernel size.
return:
idx_list: (type: np.array) list of the successive indices of the 1D input array
access to the 1D convolution algorithm.
example:
>>> gen_idx_conv1d(in_size=5, ker_size=3)
array([0, 1, 2, 1, 2, 3, 2, 3, 4])
"""
f = lambda dim1, dim2, axis: np.reshape(np.tile(np.expand_dims(np.arange(dim1),axis),dim2),-1)
out_size = in_size-ker_size+1
return f(ker_size, out_size, 0)+f(out_size, ker_size, 1)
def repeat_idx_2d(idx_list, nbof_rep, axis):
"""
Repeats an array of indices (idx_list) a number of time (nbof_rep) "along" an axis
(axis). This function helps to browse through a 2d array of size
(len(idx_list),nbof_rep).
args:
idx_list: (type: np.array or list) a 1D array of indices.
nbof_rep: (type: int) number of repetition.
axis: (type: int) axis "along" which the repetition will be applied.
return
idx_list: (type: np.array) a 1D array of indices of size len(idx_list)*nbof_rep.
example:
>>> a = np.array([0, 1, 2])
>>> repeat_idx_2d(a, 3, 0) # repeats array 'a' 3 times along 'axis' 0
array([0, 0, 0, 1, 1, 1, 2, 2, 2])
>>> repeat_idx_2d(a, 3, 1) # repeats array 'a' 3 times along 'axis' 1
array([0, 1, 2, 0, 1, 2, 0, 1, 2])
>>> b = np.reshape(np.arange(3*4), (3,4))
>>> b[repeat_idx_2d(np.arange(3), 4, 0), repeat_idx_2d(np.arange(4), 3, 1)]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
"""
assert axis in [0,1], "Axis should be equal to 0 or 1."
tile_axis = (nbof_rep,1) if axis else (1,nbof_rep)
return np.reshape(np.tile(np.expand_dims(idx_list, 1),tile_axis),-1)
def conv2d(im, ker):
"""
Performs a 'valid' 2D convolution on an image. The input image may be
a 2D or a 3D array.
The output image first two dimensions will be reduced depending on the
convolution size.
The kernel may be a 2D or 3D array. If 2D, it will be applied on every
channel of the input image. If 3D, its last dimension must match the
image one.
args:
im: (type: np.array) image (2D or 3D).
ker: (type: np.array) convolution kernel (2D or 3D).
returns:
im: (type: np.array) convolved image.
example:
>>> im = np.reshape(np.arange(10*10*3),(10,10,3))/(10*10*3) # 3D image
>>> ker = np.array([[0,1,0],[-1,0,1],[0,-1,0]]) # 2D kernel
>>> conv2d(im, ker) # 3D array of shape (8,8,3)
"""
if len(im.shape)==2: # if the image is a 2D array, it is reshaped by expanding the last dimension
im = np.expand_dims(im,-1)
im_x, im_y, im_w = im.shape
if len(ker.shape)==2: # if the kernel is a 2D array, it is reshaped so it will be applied to all of the image channels
ker = np.tile(np.expand_dims(ker,-1),[1,1,im_w]) # the same kernel will be applied to all of the channels
assert ker.shape[-1]==im.shape[-1], "Kernel and image last dimension must match."
ker_x = ker.shape[0]
ker_y = ker.shape[1]
# shape of the output image
out_x = im_x - ker_x + 1
out_y = im_y - ker_y + 1
# reshapes the image to (out_x, ker_x, out_y, ker_y, im_w)
idx_list_x = gen_idx_conv1d(im_x, ker_x) # computes the indices of a 1D conv (cf. idx_conv1d doc)
idx_list_y = gen_idx_conv1d(im_y, ker_y)
idx_reshaped_x = repeat_idx_2d(idx_list_x, len(idx_list_y), 0) # repeats the previous indices to be used in 2D (cf. repeat_idx_2d doc)
idx_reshaped_y = repeat_idx_2d(idx_list_y, len(idx_list_x), 1)
im_reshaped = np.reshape(im[idx_reshaped_x, idx_reshaped_y, :], [out_x, ker_x, out_y, ker_y, im_w]) # reshapes
# reshapes the 2D kernel
ker = np.reshape(ker,[1, ker_x, 1, ker_y, im_w])
# applies the kernel to the image and reduces the dimension back to the one of original input image
return np.squeeze(np.sum(im_reshaped*ker, axis=(1,3)))
I tried to add a lot of comments to explain the method but the global idea is to reshape the 3D input image to a 5D one of shape (output_image_height, kernel_height, output_image_width, kernel_width, output_image_channel) and then to apply the kernel directly using the basic array multiplication. Of course, this methods is then using more memory (during the execution the size of the image is thus multiply by kernel_height*kernel_width) but it is faster.
To do this reshape step, I 'over-used' the indexing methods of numpy arrays, especially, the possibility of giving a numpy array as indices into a numpy array.
This methods could also be used to re-code the 2D convolution product in Pytorch or Tensorflow using the base math functions but I have no doubt in saying that it will be slower than the existing nn.conv2d operator...
I really enjoyed coding this method by only using the numpy basic tools.
One of the most obvious is to hard code the kernel.
img = img.convert('L')
a = np.array(img)
out = np.zeros([a.shape[0]-2, a.shape[1]-2], dtype='float')
out += a[:-2, :-2]
out += a[1:-1, :-2]
out += a[2:, :-2]
out += a[:-2, 1:-1]
out += a[1:-1,1:-1]
out += a[2:, 1:-1]
out += a[:-2, 2:]
out += a[1:-1, 2:]
out += a[2:, 2:]
out /= 9.0
out = out.astype('uint8')
img = Image.fromarray(out)
This example does a box blur 3x3 completely unrolled. You can multiply the values where you have a different value and divide them by a different amount. But, if you honestly want the quickest and dirtiest method this is it. I think it beats Guillaume Mougeot's method by a factor of like 5. His method beating the others by a factor of 10.
It may lose a few steps if you're doing something like a gaussian blur. and need to multiply some stuff.
Try to first round and then cast to uint8:
data = data.round().astype(np.uint8);
I wrote this convolve_stride which uses numpy.lib.stride_tricks.as_strided. Moreover it supports both strides and dilation. It is also compatible to tensor with order > 2.
import numpy as np
from numpy.lib.stride_tricks import as_strided
from im2col import im2col
def conv_view(X, F_s, dr, std):
X_s = np.array(X.shape)
F_s = np.array(F_s)
dr = np.array(dr)
Fd_s = (F_s - 1) * dr + 1
if np.any(Fd_s > X_s):
raise ValueError('(Dilated) filter size must be smaller than X')
std = np.array(std)
X_ss = np.array(X.strides)
Xn_s = (X_s - Fd_s) // std + 1
Xv_s = np.append(Xn_s, F_s)
Xv_ss = np.tile(X_ss, 2) * np.append(std, dr)
return as_strided(X, Xv_s, Xv_ss, writeable=False)
def convolve_stride(X, F, dr=None, std=None):
if dr is None:
dr = np.ones(X.ndim, dtype=int)
if std is None:
std = np.ones(X.ndim, dtype=int)
if not (X.ndim == F.ndim == len(dr) == len(std)):
raise ValueError('X.ndim, F.ndim, len(dr), len(std) must be the same')
Xv = conv_view(X, F.shape, dr, std)
return np.tensordot(Xv, F, axes=X.ndim)
%timeit -n 100 -r 10 convolve_stride(A, F)
#31.2 ms ± 1.31 ms per loop (mean ± std. dev. of 10 runs, 100 loops each)
Super simple and fast convolution using only basic numpy:
import numpy as np
def conv2d(image, kernel):
# apply kernel to image, return image of the same shape
# assume both image and kernel are 2D arrays
# kernel = np.flipud(np.fliplr(kernel)) # optionally flip the kernel
k = kernel.shape[0]
width = k//2
# place the image inside a frame to compensate for the kernel overlap
a = framed(image, width)
b = np.zeros(image.shape) # fill the output array with zeros; do not use np.empty()
# shift the image around each pixel, multiply by the corresponding kernel value and accumulate the results
for p, dp, r, dr in [(i, i + image.shape[0], j, j + image.shape[1]) for i in range(k) for j in range(k)]:
b += a[p:dp, r:dr] * kernel[p, r]
# or just write two nested for loops if you prefer
# np.clip(b, 0, 255, out=b) # optionally clip values exceeding the limits
return b
def framed(image, width):
a = np.zeros((image.shape[0]+2*width, image.shape[1]+2*width))
a[width:-width, width:-width] = image
# alternatively fill the frame with ones or copy border pixels
return a
Run it:
Image.fromarray(conv2d(image, kernel).astype('uint8'))
Instead of sliding the kernel along the image and computing the transformation pixel by pixel, create a series of shifted versions of the image corresponding to each element in the kernel and apply the corresponding kernel value to each of the shifted image versions.
This is probably the fastest you can get using just basic numpy; the speed is already comparable to C implementation of scipy convolve2d and better than fftconvolve. The idea is similar to #Tatarize. This example works only for one color component; for RGB just repeat for each (or modify the algorithm accordingly).
Typically, Convolution 2D is a misnomer. Ideally, under the hood,
whats being done is a correlation of 2 matrices.
pad == same
returns the output as the same as input dimension
It can also take asymmetric images. In order to perform correlation(convolution in deep learning lingo) on a batch of 2d matrices, one can iterate over all the channels, calculate the correlation for each of the channel slices with the respective filter slice.
For example: If image is (28,28,3) and filter size is (5,5,3) then take each of the 3 slices from the image channel and perform the cross correlation using the custom function above and stack the resulting matrix in the respective dimension of the output.
def get_cross_corr_2d(W, X, pad = 'valid'):
if(pad == 'same'):
pr = int((W.shape[0] - 1)/2)
pc = int((W.shape[1] - 1)/2)
conv_2d = np.zeros((X.shape[0], X.shape[1]))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.inner(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
else:
pr = W.shape[0] - 1
pc = W.shape[1] - 1
conv_2d = np.zeros((X.shape[0] - W.shape[0] + 2*pr + 1,
X.shape[1] - W.shape[1] + 2*pc + 1))
X_pad = np.zeros((X.shape[0] + 2*pr, X.shape[1] + 2*pc))
X_pad[pr:pr+X.shape[0], pc:pc+X.shape[1]] = X
for r in range(conv_2d.shape[0]):
for c in range(conv_2d.shape[1]):
conv_2d[r,c] = np.sum(np.multiply(W, X_pad[r:r+W.shape[0], c:c+W.shape[1]]))
return conv_2d
This code incorrect:
for r in range(nr):
data[r,:] = np.convolve(data[r,:], H_r, 'same')
for c in range(nc):
data[:,c] = np.convolve(data[:,c], H_c, 'same')
See Nussbaumer transformation from multidimentional convolution to one dimentional.

Categories