Article Schema:
Below is the article schema what I have created.
class ArticleSchema(SchemaClass):
title = TEXT(
phrase=True, sortable=True, stored=True,
field_boost=2.0, spelling=True, analyzer=StemmingAnalyzer())
keywords = KEYWORD(
commas=True, field_boost=1.5, lowercase=True)
authors = KEYWORD(stored=True, commas=True, lowercase=True)
content = TEXT(spelling=True, analyzer=StemmingAnalyzer())
summary = TEXT(spelling=True, analyzer=StemmingAnalyzer())
published_time = DATETIME(stored=True, sortable=True)
permalink = STORED
thumbnail = STORED
article_id = ID(unique=True, stored=True)
topic = TEXT(spelling=True, stored=True)
series_id = STORED
tags = KEYWORD(commas=True, lowercase=True)
Search Query
FIELD_TIME = 'published_time'
FIELD_TITLE = 'title'
FIELD_PUBLISHER = 'authors'
FIELD_KEYWORDS = 'keywords'
FIELD_CONTENT = 'content'
FIELD_TOPIC = 'topic'
def search_query(search_term=None, page=1, result_len=10):
'''Search the provided query.'''
if not search_term or search_term == '':
return None, 0
if not index.exists_in(INDEX_DIR, indexname=INDEX_NAME):
return None, 0
ix = get_index()
parser = qparser.MultifieldParser(
[FIELD_TITLE, FIELD_PUBLISHER, FIELD_KEYWORDS, FIELD_TOPIC],
ix.schema)
query = parser.parse(search_term)
query.normalize()
search_results = []
with ix.searcher() as searcher:
results = searcher.search_page(
query,
pagenum=page,
pagelen=result_len,
sortedby=[sorting_timestamp, scores],
reverse=True,
terms=True
)
if results.scored_length() > 0:
for hit in results:
search_results.append(append_to(hit))
return (search_results, results.pagecount)
parser = qparser.MultifieldParser(
[FIELD_TITLE, FIELD_PUBLISHER, FIELD_TOPIC],
ix.schema, termclass=FuzzyTerm)
parser.add_plugin(qparser.FuzzyTermPlugin())
query = parser.parse(search_term)
query.normalize()
search_results = []
with ix.searcher() as searcher:
results = searcher.search_page(
query,
pagenum=page,
pagelen=result_len,
sortedby=[sorting_timestamp, scores],
reverse=True,
terms=True
)
if results.scored_length() > 0:
for hit in results:
search_results.append(append_to(hit))
return (search_results, results.pagecount)
return None, 0
When I am trying the title search is working, but for author and keyword the search is not working. I am not able to understand what wrong I am doing here. I am getting data from api and then running the index. It's all working fine. But when I am searching through keywords like authors and keywords it's not working.
Both authors and keywords are of type KEYWORD which does not support phrase search which mean that you should search with the exact keyword or one of its derivatives since you are using a stemmer.
For authors, I think you should use TEXT.
From whoosh documentation
whoosh.fields.KEYWORD
This type is designed for space- or comma-separated keywords. This
type is indexed and searchable (and optionally stored). To save space,
it does not support phrase searching.
Related
Im working on a small project of retrieving information about books from the Google Books API using Python 3. For this i make a call to the API, read out the variables and store those in a list. For a search like "linkedin" this works perfectly. However when i enter "Google", it reads the second title from the JSON input. How can this happen?
Please find my code below (Google_Results is the class I use to initialize the variables):
import requests
def Book_Search(search_term):
parms = {"q": search_term, "maxResults": 3}
r = requests.get(url="https://www.googleapis.com/books/v1/volumes", params=parms)
print(r.url)
results = r.json()
i = 0
for result in results["items"]:
try:
isbn13 = str(result["volumeInfo"]["industryIdentifiers"][0]["identifier"])
isbn10 = str(result["volumeInfo"]["industryIdentifiers"][1]["identifier"])
title = str(result["volumeInfo"]["title"])
author = str(result["volumeInfo"]["authors"])[2:-2]
publisher = str(result["volumeInfo"]["publisher"])
published_date = str(result["volumeInfo"]["publishedDate"])
description = str(result["volumeInfo"]["description"])
pages = str(result["volumeInfo"]["pageCount"])
genre = str(result["volumeInfo"]["categories"])[2:-2]
language = str(result["volumeInfo"]["language"])
image_link = str(result["volumeInfo"]["imageLinks"]["thumbnail"])
dict = Google_Results(isbn13, isbn10, title, author, publisher, published_date, description, pages, genre,
language, image_link)
gr.append(dict)
print(gr[i].title)
i += 1
except:
pass
return
gr = []
Book_Search("Linkedin")
I am a beginner to Python, so any help would be appreciated!
It does so because there is no publisher entry in volumeInfo of the first entry, thus it raises a KeyError and your except captures it. If you're going to work with fuzzy data you have to account for the fact that it will not always have the expected structure. For simple cases you can rely on dict.get() and its default argument to return a 'valid' default entry if an entry is missing.
Also, there are a few conceptual problems with your function - it relies on a global gr which is bad design, it shadows the built-in dict type and it captures all exceptions guaranteeing that you cannot exit your code even with a SIGINT... I'd suggest you to convert it to something a bit more sane:
def book_search(search_term, max_results=3):
results = [] # a list to store the results
parms = {"q": search_term, "maxResults": max_results}
r = requests.get(url="https://www.googleapis.com/books/v1/volumes", params=parms)
try: # just in case the server doesn't return valid JSON
for result in r.json().get("items", []):
if "volumeInfo" not in result: # invalid entry - missing volumeInfo
continue
result_dict = {} # a dictionary to store our discovered fields
result = result["volumeInfo"] # all the data we're interested is in volumeInfo
isbns = result.get("industryIdentifiers", None) # capture ISBNs
if isinstance(isbns, list) and isbns:
for i, t in enumerate(("isbn10", "isbn13")):
if len(isbns) > i and isinstance(isbns[i], dict):
result_dict[t] = isbns[i].get("identifier", None)
result_dict["title"] = result.get("title", None)
authors = result.get("authors", None) # capture authors
if isinstance(authors, list) and len(authors) > 2: # you're slicing from 2
result_dict["author"] = str(authors[2:-2])
result_dict["publisher"] = result.get("publisher", None)
result_dict["published_date"] = result.get("publishedDate", None)
result_dict["description"] = result.get("description", None)
result_dict["pages"] = result.get("pageCount", None)
genres = result.get("authors", None) # capture genres
if isinstance(genres, list) and len(genres) > 2: # since you're slicing from 2
result_dict["genre"] = str(genres[2:-2])
result_dict["language"] = result.get("language", None)
result_dict["image_link"] = result.get("imageLinks", {}).get("thumbnail", None)
# make sure Google_Results accepts keyword arguments like title, author...
# and make them optional as they might not be in the returned result
gr = Google_Results(**result_dict)
results.append(gr) # add it to the results list
except ValueError:
return None # invalid response returned, you may raise an error instead
return results # return the results
Then you can easily retrieve as much info as possible for a term:
gr = book_search("Google")
And it will be far more tolerant of data omissions, provided that your Google_Results type makes most of the entries optional.
Following #Coldspeed's recommendation it became clear that missing information in the JSON file caused the exception to run. Since I only had a "pass" statement there it skipped the entire result. Therefore I will have to adapt the "Try and Except" statements so errors do get handled properly.
Thanks for the help guys!
I am trying to extract raw data from a text file and after processing the raw data, I want to export it to another text file. Below is the python code I have written for this process. I am using the "petl" package in python 3 for this purpose. 'locations.txt' is the raw data file.
import glob, os
from petl import *
class ETL():
def __init__(self, input):
self.list = input
def parse_P(self):
personids = None
for term in self.list:
if term.startswith('P'):
personids = term[1:]
personid = personids.split(',')
return personid
def return_location(self):
location = None
for term in self.list:
if term.startswith('L'):
location = term[1:]
return location
def return_location_id(self, location):
location = self.return_location()
locationid = None
def return_country_id(self):
countryid = None
for term in self.list:
if term.startswith('C'):
countryid = term[1:]
return countryid
def return_region_id(self):
regionid = None
for term in self.list:
if term.startswith('R'):
regionid = term[1:]
return regionid
def return_city_id(self):
cityid = None
for term in self.list:
if term.startswith('I'):
cityid = term[1:]
return cityid
print (os.getcwd())
os.chdir("D:\ETL-IntroductionProject")
print (os.getcwd())
final_location = [['L','P', 'C', 'R', 'I']]
new_location = fromtext('locations.txt', encoding= 'Latin-1')
stored_list = []
for identifier in new_location:
if identifier[0].startswith('L'):
identifier = identifier[0]
info_list = identifier.split('_')
stored_list.append(info_list)
for lst in stored_list:
tabling = ETL(lst)
location = tabling.return_location()
country = tabling.return_country_id()
city = tabling.return_city_id()
region = tabling.return_region_id()
person_list = tabling.parse_P()
for person in person_list:
table_new = [location, person, country, region, city]
final_location.append(table_new)
totext(final_location, 'l1.txt')
However when I use "totext" function of petl, it throws me an "Assertion Error".
AssertionError: template is required
I am unable to understand what the fault is. Can some one please explain the problem I am facing and what I should be doing ?
The template parameter to the toext function is not optional there is no default format for how the rows are written in this case, you must provide a template. Check the doc for toext here for an example: https://petl.readthedocs.io/en/latest/io.html#text-files
The template describes the format of each row that it writes out using the field headers to describe things, you can optionally pass in a prologue to write the header too. A basic template in your case would be:
table_new_template = "{L} {P} {C} {R} {I}"
totext(final_location, 'l1.txt', template=table_new_template)
I am trying to develop an Infobox parser in Python which supports all the languages of Wikipedia. The parser will get the infobox data and will return the data in a Dictionary.
The keys of the Dictionary will be the property which is described (e.g. Population, City name, etc...).
The problem is that Wikipedia has slightly different page contents for each language. But the most important thing is that the API response structure for each language can also be different.
For example, the API response for 'Paris' in English contains this Infobox:
{{Infobox French commune |name = Paris |commune status = [[Communes of France|Commune]] and [[Departments of France|department]] |image = <imagemap> File:Paris montage.jpg|275px|alt=Paris montage
and in Greek, the corresponding part for 'Παρίσι' is:
[...] {{Πόλη (Γαλλία) | Πόλη = Παρίσι | Έμβλημα =Blason paris 75.svg | Σημαία =Mairie De Paris (SVG).svg | Πλάτος Σημαίας =120px | Εικόνα =Paris - Eiffelturm und Marsfeld2.jpg [...]
In the second example, there isn't any 'Infobox' occurrence after the {{. Also, in the API response the name = Paris is not the exact translation for Πόλη = Παρίσι. (Πόλη means city, not name)
Because of such differences between the responses, my code fails.
Here is the code:
class WikipediaInfobox():
# Class to get and parse the Wikipedia Infobox Data
infoboxArrayUnprocessed = [] # Maintains the order which the data is displayed.
infoboxDictUnprocessed = {} # Still Contains Brackets and Wikitext coding. Will be processed more later...
language="en"
def getInfoboxDict(self, infoboxRaw): # Get the Infobox in Dict and Array form (Unprocessed)
if infoboxRaw.strip() == "":
return {}
boxLines = [line.strip().replace(" "," ") for line in infoboxRaw.splitlines()]
wikiObjectType = boxLines[0]
infoboxData = [line[1:] for line in boxLines[1:]]
toReturn = {"wiki_type":wikiObjectType}
for i in infoboxData:
key = i.split("=")[0].strip()
value = ""
if i.strip() != key + "=":
value=i.split("=")[1].strip()
self.infoboxArrayUnprocessed.append({key:value})
toReturn[key]=value
self.infoboxDictUnprocessed = toReturn
return toReturn
def getInfoboxRaw(self, pageTitle, followRedirect = False, resetOld=True): # Get Infobox in Raw Text
if resetOld:
infoboxDict = {}
infoboxDictUnprocessed = {}
infoboxArray = []
infoboxArrayUnprocessed = []
params = { "format":"xml", "action":"query", "prop":"revisions", "rvprop":"timestamp|user|comment|content" }
params["titles"] = "%s" % urllib.quote(pageTitle.encode("utf8"))
qs = "&".join("%s=%s" % (k, v) for k, v in params.items())
url = "http://" + self.language + ".wikipedia.org/w/api.php?%s" % qs
tree = etree.parse(urllib.urlopen(url))
revs = tree.xpath('//rev')
if len(revs) == 0:
return ""
if "#REDIRECT" in revs[-1].text and followRedirect == True:
redirectPage = revs[-1].text[revs[-1].text.find("[[")+2:revs[-1].text.find("]]")]
return self.getInfoboxRaw(redirectPage,followRedirect,resetOld)
elif "#REDIRECT" in revs[-1].text and followRedirect == False:
return ""
infoboxRaw = ""
if "{{Infobox" in revs[-1].text: # -> No Multi-language support:
infoboxRaw = revs[-1].text.split("{{Infobox")[1].split("}}")[0]
return infoboxRaw
def __init__(self, pageTitle = "", followRedirect = False): # Constructor
if pageTitle != "":
self.language = guess_language.guessLanguage(pageTitle)
if self.language == "UNKNOWN":
self.language = "en"
infoboxRaw = self.getInfoboxRaw(pageTitle, followRedirect)
self.getInfoboxDict(infoboxRaw) # Now the parsed data is in self.infoboxDictUnprocessed
Some parts of this code was found on this blog...
I don't want to reinvent the wheel, so maybe someone has a nice solution for multi-language support and neat parsing of the Infobox section of Wikipedia.
I have seen many alternatives, like DBPedia or some other parsers that MediaWiki recommends, but I haven't found anything that suits my needs, yet. I also want to avoid scraping the page with BeautifulSoup, because it can fail on some cases, but if it is necessary it will do.
If something isn't clear enough, please ask. I want to help as much as I can.
Wikidata is definitely the first choice these days if you want to get structured data, anyway if in the future you need to parse data from wikipedia articles, especially as you are using Python, I can recommand mwparserfromhell which is a python library aimed at parsing wikitext and that has an option to extract templates and their attributes. That won't directly fix your issue as the multiple templates in multiple languages will definitely be different but that might be useful if you continue trying to parse wikitext.
I'm using YouTube API with Python. I can already gather all the comments of a specific video, including the name of the authors, the date and the content of the comments.
I can also with a separate piece of code, extract the personal information (age,gender,interests,...) of a specific author.
But I can not use them in one place. i.e. I need to gather all the comments of a video, with the name of the comments' authors and having the personal information of all those authors.
in follow is the code that I developed. But I get an 'RequestError' which I dont know how to handle and where is the problem.
import gdata.youtube
import gdata.youtube.service
yt_service = gdata.youtube.service.YouTubeService()
f = open('test1.csv','w')
f.writelines(['UserName',',','Age',',','Date',',','Comment','\n'])
def GetAndPrintVideoFeed(string1):
yt_service = gdata.youtube.service.YouTubeService()
user_entry = yt_service.GetYouTubeUserEntry(username = string1)
X = PrintentryEntry(user_entry)
return X
def PrintentryEntry(entry):
# print required fields where we know there will be information
Y = entry.age.text
return Y
def GetComment(next1):
yt_service = gdata.youtube.service.YouTubeService()
nextPageFeed = yt_service.GetYouTubeVideoCommentFeed(next1)
for comment_entry in nextPageFeed.entry:
string1 = comment_entry.author[0].name.text.split("/")[-1]
Z = GetAndPrintVideoFeed(string1)
string2 = comment_entry.updated.text.split("/")[-1]
string3 = comment_entry.content.text.split("/")[-1]
f.writelines( [str(string1),',',Z,',',string2,',',string3,'\n'])
next2 = nextPageFeed.GetNextLink().href
GetComment(next2)
video_id = '8wxOVn99FTE'
comment_feed = yt_service.GetYouTubeVideoCommentFeed(video_id=video_id)
for comment_entry in comment_feed.entry:
string1 = comment_entry.author[0].name.text.split("/")[-1]
Z = GetAndPrintVideoFeed(string1)
string2 = comment_entry.updated.text.split("/")[-1]
string3 = comment_entry.content.text.split("/")[-1]
f.writelines( [str(string1),',',Z,',',string2,',',string3,'\n'])
next1 = comment_feed.GetNextLink().href
GetComment(next1)
I think you need a better understanding of the Youtube API and how everything relates together. I've written wrapper classes which can handle multiple types of Feeds or Entries and "fixes" gdata's inconsistent parameter conventions.
Here are some snippets showing how the scraping/crawling can be generalized without too much difficulty.
I know this isn't directly answering your question, It's more high level design but it's worth thinking about if you're going to be doing a large amount of youtube/gdata data pulling.
def get_feed(thing=None, feed_type=api.GetYouTubeUserFeed):
if feed_type == 'user':
feed = api.GetYouTubeUserFeed(username=thing)
if feed_type == 'related':
feed = api.GetYouTubeRelatedFeed(video_id=thing)
if feed_type == 'comments':
feed = api.GetYouTubeVideoCommentFeed(video_id=thing)
feeds = []
entries = []
while feed:
feeds.append(feed)
feed = api.GetNext(feed)
[entries.extend(f.entry) for f in feeds]
return entries
...
def myget(url,service=None):
def myconverter(x):
logfile = url.replace('/',':')+'.log'
logfile = logfile[len('http://gdata.youtube.com/feeds/api/'):]
my_logger.info("myget: %s" % url)
if service == 'user_feed':
return gdata.youtube.YouTubeUserFeedFromString(x)
if service == 'comment_feed':
return gdata.youtube.YouTubeVideoCommentFeedFromString(x)
if service == 'comment_entry':
return gdata.youtube.YouTubeVideoCommentEntryFromString(x)
if service == 'video_feed':
return gdata.youtube.YouTubeVideoFeedFromString(x)
if service == 'video_entry':
return gdata.youtube.YouTubeVideoEntryFromString(x)
return api.GetWithRetries(url,
converter=myconverter,
num_retries=3,
delay=2,
backoff=5,
logger=my_logger
)
mapper={}
mapper[api.GetYouTubeUserFeed]='user_feed'
mapper[api.GetYouTubeVideoFeed]='video_feed'
mapper[api.GetYouTubeVideoCommentFeed]='comment_feed'
https://gist.github.com/2303769 data/service.py (routing)
class Tag(models.Model):
name = models.CharField(maxlength=100)
class Blog(models.Model):
name = models.CharField(maxlength=100)
tags = models.ManyToManyField(Tag)
Simple models just to ask my question.
I wonder how can i query blogs using tags in two different ways.
Blog entries that are tagged with "tag1" or "tag2":
Blog.objects.filter(tags_in=[1,2]).distinct()
Blog objects that are tagged with "tag1" and "tag2" : ?
Blog objects that are tagged with exactly "tag1" and "tag2" and nothing else : ??
Tag and Blog is just used for an example.
You could use Q objects for #1:
# Blogs who have either hockey or django tags.
from django.db.models import Q
Blog.objects.filter(
Q(tags__name__iexact='hockey') | Q(tags__name__iexact='django')
)
Unions and intersections, I believe, are a bit outside the scope of the Django ORM, but its possible to to these. The following examples are from a Django application called called django-tagging that provides the functionality. Line 346 of models.py:
For part two, you're looking for a union of two queries, basically
def get_union_by_model(self, queryset_or_model, tags):
"""
Create a ``QuerySet`` containing instances of the specified
model associated with *any* of the given list of tags.
"""
tags = get_tag_list(tags)
tag_count = len(tags)
queryset, model = get_queryset_and_model(queryset_or_model)
if not tag_count:
return model._default_manager.none()
model_table = qn(model._meta.db_table)
# This query selects the ids of all objects which have any of
# the given tags.
query = """
SELECT %(model_pk)s
FROM %(model)s, %(tagged_item)s
WHERE %(tagged_item)s.content_type_id = %(content_type_id)s
AND %(tagged_item)s.tag_id IN (%(tag_id_placeholders)s)
AND %(model_pk)s = %(tagged_item)s.object_id
GROUP BY %(model_pk)s""" % {
'model_pk': '%s.%s' % (model_table, qn(model._meta.pk.column)),
'model': model_table,
'tagged_item': qn(self.model._meta.db_table),
'content_type_id': ContentType.objects.get_for_model(model).pk,
'tag_id_placeholders': ','.join(['%s'] * tag_count),
}
cursor = connection.cursor()
cursor.execute(query, [tag.pk for tag in tags])
object_ids = [row[0] for row in cursor.fetchall()]
if len(object_ids) > 0:
return queryset.filter(pk__in=object_ids)
else:
return model._default_manager.none()
For part #3 I believe you're looking for an intersection. See line 307 of models.py
def get_intersection_by_model(self, queryset_or_model, tags):
"""
Create a ``QuerySet`` containing instances of the specified
model associated with *all* of the given list of tags.
"""
tags = get_tag_list(tags)
tag_count = len(tags)
queryset, model = get_queryset_and_model(queryset_or_model)
if not tag_count:
return model._default_manager.none()
model_table = qn(model._meta.db_table)
# This query selects the ids of all objects which have all the
# given tags.
query = """
SELECT %(model_pk)s
FROM %(model)s, %(tagged_item)s
WHERE %(tagged_item)s.content_type_id = %(content_type_id)s
AND %(tagged_item)s.tag_id IN (%(tag_id_placeholders)s)
AND %(model_pk)s = %(tagged_item)s.object_id
GROUP BY %(model_pk)s
HAVING COUNT(%(model_pk)s) = %(tag_count)s""" % {
'model_pk': '%s.%s' % (model_table, qn(model._meta.pk.column)),
'model': model_table,
'tagged_item': qn(self.model._meta.db_table),
'content_type_id': ContentType.objects.get_for_model(model).pk,
'tag_id_placeholders': ','.join(['%s'] * tag_count),
'tag_count': tag_count,
}
cursor = connection.cursor()
cursor.execute(query, [tag.pk for tag in tags])
object_ids = [row[0] for row in cursor.fetchall()]
if len(object_ids) > 0:
return queryset.filter(pk__in=object_ids)
else:
return model._default_manager.none()
I've tested these out with Django 1.0:
The "or" queries:
Blog.objects.filter(tags__name__in=['tag1', 'tag2']).distinct()
or you could use the Q class:
Blog.objects.filter(Q(tags__name='tag1') | Q(tags__name='tag2')).distinct()
The "and" query:
Blog.objects.filter(tags__name='tag1').filter(tags__name='tag2')
I'm not sure about the third one, you'll probably need to drop to SQL to do it.
Please don't reinvent the wheel and use django-tagging application which was made exactly for your use case. It can do all queries you describe, and much more.
If you need to add custom fields to your Tag model, you can also take a look at my branch of django-tagging.
This will do the trick for you
Blog.objects.filter(tags__name__in=['tag1', 'tag2']).annotate(tag_matches=models.Count(tags)).filter(tag_matches=2)