Wikipedia Infobox parser with Multi-Language Support - python

I am trying to develop an Infobox parser in Python which supports all the languages of Wikipedia. The parser will get the infobox data and will return the data in a Dictionary.
The keys of the Dictionary will be the property which is described (e.g. Population, City name, etc...).
The problem is that Wikipedia has slightly different page contents for each language. But the most important thing is that the API response structure for each language can also be different.
For example, the API response for 'Paris' in English contains this Infobox:
{{Infobox French commune |name = Paris |commune status = [[Communes of France|Commune]] and [[Departments of France|department]] |image = <imagemap> File:Paris montage.jpg|275px|alt=Paris montage
and in Greek, the corresponding part for 'Παρίσι' is:
[...] {{Πόλη (Γαλλία) | Πόλη = Παρίσι | Έμβλημα =Blason paris 75.svg | Σημαία =Mairie De Paris (SVG).svg | Πλάτος Σημαίας =120px | Εικόνα =Paris - Eiffelturm und Marsfeld2.jpg [...]
In the second example, there isn't any 'Infobox' occurrence after the {{. Also, in the API response the name = Paris is not the exact translation for Πόλη = Παρίσι. (Πόλη means city, not name)
Because of such differences between the responses, my code fails.
Here is the code:
class WikipediaInfobox():
# Class to get and parse the Wikipedia Infobox Data
infoboxArrayUnprocessed = [] # Maintains the order which the data is displayed.
infoboxDictUnprocessed = {} # Still Contains Brackets and Wikitext coding. Will be processed more later...
language="en"
def getInfoboxDict(self, infoboxRaw): # Get the Infobox in Dict and Array form (Unprocessed)
if infoboxRaw.strip() == "":
return {}
boxLines = [line.strip().replace(" "," ") for line in infoboxRaw.splitlines()]
wikiObjectType = boxLines[0]
infoboxData = [line[1:] for line in boxLines[1:]]
toReturn = {"wiki_type":wikiObjectType}
for i in infoboxData:
key = i.split("=")[0].strip()
value = ""
if i.strip() != key + "=":
value=i.split("=")[1].strip()
self.infoboxArrayUnprocessed.append({key:value})
toReturn[key]=value
self.infoboxDictUnprocessed = toReturn
return toReturn
def getInfoboxRaw(self, pageTitle, followRedirect = False, resetOld=True): # Get Infobox in Raw Text
if resetOld:
infoboxDict = {}
infoboxDictUnprocessed = {}
infoboxArray = []
infoboxArrayUnprocessed = []
params = { "format":"xml", "action":"query", "prop":"revisions", "rvprop":"timestamp|user|comment|content" }
params["titles"] = "%s" % urllib.quote(pageTitle.encode("utf8"))
qs = "&".join("%s=%s" % (k, v) for k, v in params.items())
url = "http://" + self.language + ".wikipedia.org/w/api.php?%s" % qs
tree = etree.parse(urllib.urlopen(url))
revs = tree.xpath('//rev')
if len(revs) == 0:
return ""
if "#REDIRECT" in revs[-1].text and followRedirect == True:
redirectPage = revs[-1].text[revs[-1].text.find("[[")+2:revs[-1].text.find("]]")]
return self.getInfoboxRaw(redirectPage,followRedirect,resetOld)
elif "#REDIRECT" in revs[-1].text and followRedirect == False:
return ""
infoboxRaw = ""
if "{{Infobox" in revs[-1].text: # -> No Multi-language support:
infoboxRaw = revs[-1].text.split("{{Infobox")[1].split("}}")[0]
return infoboxRaw
def __init__(self, pageTitle = "", followRedirect = False): # Constructor
if pageTitle != "":
self.language = guess_language.guessLanguage(pageTitle)
if self.language == "UNKNOWN":
self.language = "en"
infoboxRaw = self.getInfoboxRaw(pageTitle, followRedirect)
self.getInfoboxDict(infoboxRaw) # Now the parsed data is in self.infoboxDictUnprocessed
Some parts of this code was found on this blog...
I don't want to reinvent the wheel, so maybe someone has a nice solution for multi-language support and neat parsing of the Infobox section of Wikipedia.
I have seen many alternatives, like DBPedia or some other parsers that MediaWiki recommends, but I haven't found anything that suits my needs, yet. I also want to avoid scraping the page with BeautifulSoup, because it can fail on some cases, but if it is necessary it will do.
If something isn't clear enough, please ask. I want to help as much as I can.

Wikidata is definitely the first choice these days if you want to get structured data, anyway if in the future you need to parse data from wikipedia articles, especially as you are using Python, I can recommand mwparserfromhell which is a python library aimed at parsing wikitext and that has an option to extract templates and their attributes. That won't directly fix your issue as the multiple templates in multiple languages will definitely be different but that might be useful if you continue trying to parse wikitext.

Related

Extract Text from a word document

I am trying to scrape data from a word document available at:-
https://dl.dropbox.com/s/pj82qrctzkw9137/HE%20Distributors.docx
I need to scrape the Name, Address, City, State, and Email ID. I am able to scrape the E-mail using the below code.
import docx
content = docx.Document('HE Distributors.docx')
location = []
for i in range(len(content.paragraphs)):
stat = content.paragraphs[i].text
if 'Email' in stat:
location.append(i)
for i in location:
print(content.paragraphs[i].text)
I tried to use the steps mentioned:
How to read data from .docx file in python pandas?
I need to convert this into a data frame with all the columns mentioned above.
Still facing issues with the same.
There are some inconsistencies in the document - phone numbers starting with Tel: sometimes, and Tel.: other times, and even Te: once, and I noticed one of the emails is just in the last line for that distributor without the Email: prefix, and the State isn't always in the last line.... Still, for the most part, most of the data can be extracted with regex and/or splits.
The distributors are separated by empty lines, and the names are in a different color - so I defined this function to get the font color of any paragraph from its xml:
# from bs4 import BeautifulSoup
def getParaColor(para):
try:
return BeautifulSoup(
para.paragraph_format.element.xml, 'xml'
).find('color').get('w:val')
except:
return ''
The try...except hasn't been necessary yet, but just in case...
(The xml is actually also helpful for double-checking that .text hasn't missed anything - in my case, I noticed that the email for Shri Adhya Educational Books wasn't getting extracted.)
Then, you can process the paragraphs from docx.Document with a function like:
# import re
def splitParas(paras):
ptc = [(
p.text, getParaColor(p), p.paragraph_format.element.xml
) for p in paras]
curSectn = 'UNKNOWN'
splitBlox = [{}]
for pt, pc, px in ptc:
# double-check for missing text
xmlText = BeautifulSoup(px, 'xml').text
xmlText = ' '.join([s for s in xmlText.split() if s != ''])
if len(xmlText) > len(pt): pt = xmlText
# initiate
if not pt:
if splitBlox[-1] != {}:
splitBlox.append({})
continue
if pc == '20752E':
curSectn = pt.strip()
continue
if splitBlox[-1] == {}:
splitBlox[-1]['section'] = curSectn
splitBlox[-1]['raw'] = []
splitBlox[-1]['Name'] = []
splitBlox[-1]['address_raw'] = []
# collect
splitBlox[-1]['raw'].append(pt)
if pc == 'D12229':
splitBlox[-1]['Name'].append(pt)
elif re.search("^Te.*:.*", pt):
splitBlox[-1]['tel_raw'] = re.sub("^Te.*:", '', pt).strip()
elif re.search("^Mob.*:.*", pt):
splitBlox[-1]['mobile_raw'] = re.sub("^Mob.*:", '', pt).strip()
elif pt.startswith('Email:') or re.search(".*[#].*[.].*", pt):
splitBlox[-1]['Email'] = pt.replace('Email:', '').strip()
else:
splitBlox[-1]['address_raw'].append(pt)
# some cleanup
if splitBlox[-1] == {}: splitBlox = splitBlox[:-1]
for i in range(len(splitBlox)):
addrsParas = splitBlox[i]['address_raw'] # for later
# join lists into strings
splitBlox[i]['Name'] = ' '.join(splitBlox[i]['Name'])
for k in ['raw', 'address_raw']:
splitBlox[i][k] = '\n'.join(splitBlox[i][k])
# search address for City, State and PostCode
apLast = addrsParas[-1].split(',')[-1]
maybeCity = [ap for ap in addrsParas if '–' in ap]
if '–' not in apLast:
splitBlox[i]['State'] = apLast.strip()
if maybeCity:
maybePIN = maybeCity[-1].split('–')[-1].split(',')[0]
maybeCity = maybeCity[-1].split('–')[0].split(',')[-1]
splitBlox[i]['City'] = maybeCity.strip()
splitBlox[i]['PostCode'] = maybePIN.strip()
# add mobile to tel
if 'mobile_raw' in splitBlox[i]:
if 'tel_raw' not in splitBlox[i]:
splitBlox[i]['tel_raw'] = splitBlox[i]['mobile_raw']
else:
splitBlox[i]['tel_raw'] += (', ' + splitBlox[i]['mobile_raw'])
del splitBlox[i]['mobile_raw']
# split tel [as needed]
if 'tel_raw' in splitBlox[i]:
tel_i = [t.strip() for t in splitBlox[i]['tel_raw'].split(',')]
telNum = []
for t in range(len(tel_i)):
if '/' in tel_i[t]:
tns = [t.strip() for t in tel_i[t].split('/')]
tel1 = tns[0]
telNum.append(tel1)
for tn in tns[1:]:
telNum.append(tel1[:-1*len(tn)]+tn)
else:
telNum.append(tel_i[t])
splitBlox[i]['Tel_1'] = telNum[0]
splitBlox[i]['Tel'] = telNum[0] if len(telNum) == 1 else telNum
return splitBlox
(Since I was getting font color anyway, I decided to add another
column called "section" to put East/West/etc in. And I added "PostCode" too, since it seems to be on the other side of "City"...)
Since "raw" is saved, any other value can be double checked manually at least.
The function combines "Mobile" into "Tel" even though they're extracted with separate regex.
I'd say "Tel_1" is fairly reliable, but some of the inconsistent patterns mean that other numbers in "Tel" might come out incorrect if they were separated with '/'.
Also, "Tel" is either a string or a list of strings depending on how many numbers there were in "tel_raw".
After this, you can just view as DataFrame with:
#import docx
#import pandas
content = docx.Document('HE Distributors.docx')
# pandas.DataFrame(splitParas(content.paragraphs)) # <--all Columns
pandas.DataFrame(splitParas(content.paragraphs))[[
'section', 'Name', 'address_raw', 'City',
'PostCode', 'State', 'Email', 'Tel_1', 'tel_raw'
]]

Getting wrong result from JSON - Python 3

Im working on a small project of retrieving information about books from the Google Books API using Python 3. For this i make a call to the API, read out the variables and store those in a list. For a search like "linkedin" this works perfectly. However when i enter "Google", it reads the second title from the JSON input. How can this happen?
Please find my code below (Google_Results is the class I use to initialize the variables):
import requests
def Book_Search(search_term):
parms = {"q": search_term, "maxResults": 3}
r = requests.get(url="https://www.googleapis.com/books/v1/volumes", params=parms)
print(r.url)
results = r.json()
i = 0
for result in results["items"]:
try:
isbn13 = str(result["volumeInfo"]["industryIdentifiers"][0]["identifier"])
isbn10 = str(result["volumeInfo"]["industryIdentifiers"][1]["identifier"])
title = str(result["volumeInfo"]["title"])
author = str(result["volumeInfo"]["authors"])[2:-2]
publisher = str(result["volumeInfo"]["publisher"])
published_date = str(result["volumeInfo"]["publishedDate"])
description = str(result["volumeInfo"]["description"])
pages = str(result["volumeInfo"]["pageCount"])
genre = str(result["volumeInfo"]["categories"])[2:-2]
language = str(result["volumeInfo"]["language"])
image_link = str(result["volumeInfo"]["imageLinks"]["thumbnail"])
dict = Google_Results(isbn13, isbn10, title, author, publisher, published_date, description, pages, genre,
language, image_link)
gr.append(dict)
print(gr[i].title)
i += 1
except:
pass
return
gr = []
Book_Search("Linkedin")
I am a beginner to Python, so any help would be appreciated!
It does so because there is no publisher entry in volumeInfo of the first entry, thus it raises a KeyError and your except captures it. If you're going to work with fuzzy data you have to account for the fact that it will not always have the expected structure. For simple cases you can rely on dict.get() and its default argument to return a 'valid' default entry if an entry is missing.
Also, there are a few conceptual problems with your function - it relies on a global gr which is bad design, it shadows the built-in dict type and it captures all exceptions guaranteeing that you cannot exit your code even with a SIGINT... I'd suggest you to convert it to something a bit more sane:
def book_search(search_term, max_results=3):
results = [] # a list to store the results
parms = {"q": search_term, "maxResults": max_results}
r = requests.get(url="https://www.googleapis.com/books/v1/volumes", params=parms)
try: # just in case the server doesn't return valid JSON
for result in r.json().get("items", []):
if "volumeInfo" not in result: # invalid entry - missing volumeInfo
continue
result_dict = {} # a dictionary to store our discovered fields
result = result["volumeInfo"] # all the data we're interested is in volumeInfo
isbns = result.get("industryIdentifiers", None) # capture ISBNs
if isinstance(isbns, list) and isbns:
for i, t in enumerate(("isbn10", "isbn13")):
if len(isbns) > i and isinstance(isbns[i], dict):
result_dict[t] = isbns[i].get("identifier", None)
result_dict["title"] = result.get("title", None)
authors = result.get("authors", None) # capture authors
if isinstance(authors, list) and len(authors) > 2: # you're slicing from 2
result_dict["author"] = str(authors[2:-2])
result_dict["publisher"] = result.get("publisher", None)
result_dict["published_date"] = result.get("publishedDate", None)
result_dict["description"] = result.get("description", None)
result_dict["pages"] = result.get("pageCount", None)
genres = result.get("authors", None) # capture genres
if isinstance(genres, list) and len(genres) > 2: # since you're slicing from 2
result_dict["genre"] = str(genres[2:-2])
result_dict["language"] = result.get("language", None)
result_dict["image_link"] = result.get("imageLinks", {}).get("thumbnail", None)
# make sure Google_Results accepts keyword arguments like title, author...
# and make them optional as they might not be in the returned result
gr = Google_Results(**result_dict)
results.append(gr) # add it to the results list
except ValueError:
return None # invalid response returned, you may raise an error instead
return results # return the results
Then you can easily retrieve as much info as possible for a term:
gr = book_search("Google")
And it will be far more tolerant of data omissions, provided that your Google_Results type makes most of the entries optional.
Following #Coldspeed's recommendation it became clear that missing information in the JSON file caused the exception to run. Since I only had a "pass" statement there it skipped the entire result. Therefore I will have to adapt the "Try and Except" statements so errors do get handled properly.
Thanks for the help guys!

How do I detect proper nouns in the Google NLP API?

Apologies if this isn't totally clear - I'm a Python copy-the-code-and-try-to-make-it-work developer.
I'm using the Google NLP API in Python 2.7.
When I use analyze_entities(), I can get and print the name, entity type and salience.
Mentions is supposed to contain the noun type: PROPER or COMMON, per this page:
https://cloud.google.com/natural-language/docs/reference/rest/v1beta1/Entity#EntityMention
I can't get mention type from the returned dictionary.
Here's my hideous code:
def entities_text(text, client):
"""Detects entities in the text."""
language_client = client
# Instantiates a plain text document.
document = language_client.document_from_text(text)
# Detects entities in the document. You can also analyze HTML with:
# document.doc_type == language.Document.HTML
entities = document.analyze_entities()
return entities
articles = os.listdir('articles')
for f in articles:
language_client = language.Client()
fname = "articles/" + f
thisfile = open(fname,'r')
content = thisfile.read()
entities = entities_text(content, language_client)
for e in entities:
name = e.name.strip()
type = e.entity_type.strip()
if e.name.strip()[0].isupper() and len(e.name.strip()) > 2:
print name, type, e.salience, e.mentions
That returns this:
RELATED OTHER 0.0019081507 [u'RELATED']
Zoe 3 PERSON 0.0016676666 [u'Zoe 3']
Where the value in [] is the mentions.
If I try to get mentions.type, I get an attribute not found error.
I'd appreciate any input.
1) Do not call the "AnalyzeEntities" function, but call the "AnnotateText" one instead.
2) Check for "Proper". Examine its value, it should be "PROPER" and not "PROPER_UNKNOWN" nor "NOT_PROPER".

How to gather personal information (age,gender..) of all the authors of the comments on a specific video, with Python YouTube API

I'm using YouTube API with Python. I can already gather all the comments of a specific video, including the name of the authors, the date and the content of the comments.
I can also with a separate piece of code, extract the personal information (age,gender,interests,...) of a specific author.
But I can not use them in one place. i.e. I need to gather all the comments of a video, with the name of the comments' authors and having the personal information of all those authors.
in follow is the code that I developed. But I get an 'RequestError' which I dont know how to handle and where is the problem.
import gdata.youtube
import gdata.youtube.service
yt_service = gdata.youtube.service.YouTubeService()
f = open('test1.csv','w')
f.writelines(['UserName',',','Age',',','Date',',','Comment','\n'])
def GetAndPrintVideoFeed(string1):
yt_service = gdata.youtube.service.YouTubeService()
user_entry = yt_service.GetYouTubeUserEntry(username = string1)
X = PrintentryEntry(user_entry)
return X
def PrintentryEntry(entry):
# print required fields where we know there will be information
Y = entry.age.text
return Y
def GetComment(next1):
yt_service = gdata.youtube.service.YouTubeService()
nextPageFeed = yt_service.GetYouTubeVideoCommentFeed(next1)
for comment_entry in nextPageFeed.entry:
string1 = comment_entry.author[0].name.text.split("/")[-1]
Z = GetAndPrintVideoFeed(string1)
string2 = comment_entry.updated.text.split("/")[-1]
string3 = comment_entry.content.text.split("/")[-1]
f.writelines( [str(string1),',',Z,',',string2,',',string3,'\n'])
next2 = nextPageFeed.GetNextLink().href
GetComment(next2)
video_id = '8wxOVn99FTE'
comment_feed = yt_service.GetYouTubeVideoCommentFeed(video_id=video_id)
for comment_entry in comment_feed.entry:
string1 = comment_entry.author[0].name.text.split("/")[-1]
Z = GetAndPrintVideoFeed(string1)
string2 = comment_entry.updated.text.split("/")[-1]
string3 = comment_entry.content.text.split("/")[-1]
f.writelines( [str(string1),',',Z,',',string2,',',string3,'\n'])
next1 = comment_feed.GetNextLink().href
GetComment(next1)
I think you need a better understanding of the Youtube API and how everything relates together. I've written wrapper classes which can handle multiple types of Feeds or Entries and "fixes" gdata's inconsistent parameter conventions.
Here are some snippets showing how the scraping/crawling can be generalized without too much difficulty.
I know this isn't directly answering your question, It's more high level design but it's worth thinking about if you're going to be doing a large amount of youtube/gdata data pulling.
def get_feed(thing=None, feed_type=api.GetYouTubeUserFeed):
if feed_type == 'user':
feed = api.GetYouTubeUserFeed(username=thing)
if feed_type == 'related':
feed = api.GetYouTubeRelatedFeed(video_id=thing)
if feed_type == 'comments':
feed = api.GetYouTubeVideoCommentFeed(video_id=thing)
feeds = []
entries = []
while feed:
feeds.append(feed)
feed = api.GetNext(feed)
[entries.extend(f.entry) for f in feeds]
return entries
...
def myget(url,service=None):
def myconverter(x):
logfile = url.replace('/',':')+'.log'
logfile = logfile[len('http://gdata.youtube.com/feeds/api/'):]
my_logger.info("myget: %s" % url)
if service == 'user_feed':
return gdata.youtube.YouTubeUserFeedFromString(x)
if service == 'comment_feed':
return gdata.youtube.YouTubeVideoCommentFeedFromString(x)
if service == 'comment_entry':
return gdata.youtube.YouTubeVideoCommentEntryFromString(x)
if service == 'video_feed':
return gdata.youtube.YouTubeVideoFeedFromString(x)
if service == 'video_entry':
return gdata.youtube.YouTubeVideoEntryFromString(x)
return api.GetWithRetries(url,
converter=myconverter,
num_retries=3,
delay=2,
backoff=5,
logger=my_logger
)
mapper={}
mapper[api.GetYouTubeUserFeed]='user_feed'
mapper[api.GetYouTubeVideoFeed]='video_feed'
mapper[api.GetYouTubeVideoCommentFeed]='comment_feed'
https://gist.github.com/2303769 data/service.py (routing)

Creating a Blog Summary in Python?

Is there any good library (or regex magic) which can convert a blog entry into a blog summary? I'd like the summary to display the first four sentences, first paragraph, or first X number of characters... not really sure what would be the best. Ideally, I would like it to keep html formatting tags such as <a>, <b>, <u> and <i>, but it could remove all other html tags, javascript and css.
More specifically, as input I'd give an html string representing an entire blog post. As output, I'd like an html string which contains the first few sentences, paragraph, or X number of characters. With all potentially unsafe html tags removed. In Python please.
If you're looking at the HTML you'll need to parse it. In addition to aforementioned BeautifulSoup, lxml.html has some nice HTML handling tools.
However if it's a blog you may find it even easier to work with RSS/Atom feeds. Feedparser is fantastic and would make it easy. You'd gain compatibility and durability (because RSS is more defined things will change less) but if the feed doesn't include what you need it won't help you.
I ended up using the gdata library and rolling my own blog summarizer, which uses the gdata library to fetch a Blogspot blog on Google App Engine (wouldn't be hard to port it to other platforms). The code is below. To use it, first set the constant blog_id_constant and then call get_blog_info to return a dictionary with the blog summaries.
I would not trust the code to create summaries of any random blog out there on the internet because it may not remove all unsafe html from the blog feed. However, for a simple blog that you write yourself, the code below should work.
Please feel free to copy but if you see any bugs or would like to make improvements, add them in the comments. (Sorry for the semicolons).
import sys
import os
import logging
import time
import urllib
from HTMLParser import HTMLParser
from django.core.cache import cache
# Import the Blogger API
sys.path.insert(0, 'gdata.zip')
from gdata import service
Months = ["Jan.", "Feb.", "Mar.", "Apr.", "May", "June", "July", "Aug.", "Sept.", "Oct.", "Nov.", "Dec."];
blog_id_constant = -1 # YOUR BLOG ID HERE
blog_pages_at_once = 5
# -----------------------------------------------------------------------------
# Blogger
class BlogHTMLSummarizer(HTMLParser):
'''
An HTML parser which only grabs X number of words and removes
all tags except for certain safe ones.
'''
def __init__(self, max_words = 80):
self.max_words = max_words
self.allowed_tags = ["a", "b", "u", "i", "br", "div", "p", "img", "li", "ul", "ol"]
if self.max_words < 80:
# If it's really short, don't include layout tags
self.allowed_tags = ["a", "b", "u", "i"]
self.reset()
self.out_html = ""
self.num_words = 0
self.no_more_data = False
self.no_more_tags = False
self.tag_stack = []
def handle_starttag(self, tag, attrs):
if not self.no_more_data and tag in self.allowed_tags:
val = "<%s %s>"%(tag,
" ".join("%s='%s'"%(a,b) for (a,b) in attrs))
self.tag_stack.append(tag)
self.out_html += val
def handle_data(self, data):
if self.no_more_data:
return
data = data.split(" ")
if self.num_words + len(data) >= self.max_words:
data = data[:self.max_words-self.num_words]
data.append("...")
self.no_more_data = True
self.out_html += " ".join(data)
self.num_words += len(data)
def handle_endtag(self, tag):
if self.no_more_data and not self.tag_stack:
self.no_more_tags = True
if not self.no_more_tags and self.tag_stack and tag == self.tag_stack[-1]:
if not self.tag_stack:
logging.warning("mixed up blogger tags")
else:
self.out_html += "</%s>"%tag
self.tag_stack.pop()
def get_blog_info(short_summary = False, page = 1, year = "", month = "", day = "", post = None):
'''
Returns summaries of several recent blog posts to be displayed on the front page
page: which page of blog posts to get. Starts at 1.
'''
blogger_service = service.GDataService()
blogger_service.source = 'exampleCo-exampleApp-1.0'
blogger_service.service = 'blogger'
blogger_service.account_type = 'GOOGLE'
blogger_service.server = 'www.blogger.com'
blog_dict = {}
# Do the common stuff first
query = service.Query()
query.feed = '/feeds/' + blog_id_constant + '/posts/default'
query.order_by = "published"
blog_dict['entries'] = []
def get_common_entry_data(entry, summarize_len = None):
'''
Convert an entry to a dictionary object.
'''
content = entry.content.text
if summarize_len != None:
parser = BlogHTMLSummarizer(summarize_len)
parser.feed(entry.content.text)
content = parser.out_html
pubstr = time.strptime(entry.published.text[:-10], '%Y-%m-%dT%H:%M:%S')
safe_title = entry.title.text.replace(" ","_")
for c in ":,.<>!##$%^&*()+-=?/'[]{}\\\"":
# remove nasty characters
safe_title = safe_title.replace(c, "")
link = "%d/%d/%d/%s/"%(pubstr.tm_year, pubstr.tm_mon, pubstr.tm_mday,
urllib.quote_plus(safe_title))
return {
'title':entry.title.text,
'alllinks':[x.href for x in entry.link] + [link], #including blogger links
'link':link,
'content':content,
'day':pubstr.tm_mday,
'month':Months[pubstr.tm_mon-1],
'summary': True if summarize_len != None else False,
}
def get_blogger_feed(query):
feed = cache.get(query.ToUri())
if not feed:
logging.info("GET Blogger Page: " + query.ToUri())
try:
feed = blogger_service.Get(query.ToUri())
except DownloadError:
logging.error("Cant download blog, rate limited? %s"%str(query.ToUri()))
return None
except Exception, e:
web_exception('get_blogger_feed', e)
return None
cache.set(query.ToUri(), feed, 3600)
return feed
def _in_one(a, allBs):
# Return true if a is in one of allBs
for b in allBs:
if a in b:
return True
return False
def _get_int(i):
try:
return int(i)
except ValueError:
return None
(year, month, day) = (_get_int(year), _get_int(month), _get_int(day))
if not short_summary and year and month and day:
# Get one more than we need so we can see if we have more
query.published_min = "%d-%02d-%02dT00:00:00-08:00"%(year, month, day)
query.published_max = "%d-%02d-%02dT23:59:59-08:00"%(year, month, day)
feed = get_blogger_feed(query)
if not feed:
return {}
blog_dict['detail_view'] = True
blog_dict['entries'] = map(lambda e: get_common_entry_data(e, None), feed.entry)
elif not short_summary and year and month and not day:
# Get one more than we need so we can see if we have more
query.published_min = "%d-%02d-%02dT00:00:00-08:00"%(year, month, 1)
query.published_max = "%d-%02d-%02dT23:59:59-08:00"%(year, month, 31)
feed = get_blogger_feed(query)
if not feed:
return {}
blog_dict['detail_view'] = True
blog_dict['entries'] = map(lambda e: get_common_entry_data(e, None), feed.entry)
if post:
blog_dict['entries'] = filter(lambda f: _in_one(post, f['alllinks']), blog_dict['entries'])
elif short_summary:
# Get a summary of all posts
query.max_results = str(3)
query.start_index = str(1)
feed = get_blogger_feed(query)
if not feed:
return {}
feed.entry = feed.entry[:3]
blog_dict['entries'] = map(lambda e: get_common_entry_data(e, 18), feed.entry)
else:
# Get a summary of all posts
try:
page = int(page)
except ValueError:
page = 1
# Get one more than we need so we can see if we have more
query.max_results = str(blog_pages_at_once + 1)
query.start_index = str((page - 1)* blog_pages_at_once + 1)
logging.info("GET Blogger Page: " + query.ToUri())
feed = blogger_service.Get(query.ToUri())
has_older = len(feed.entry) > blog_pages_at_once
feed.entry = feed.entry[:blog_pages_at_once]
if page > 1:
blog_dict['newer_page'] = str(page-1)
if has_older:
blog_dict['older_page'] = str(page+1)
blog_dict['entries'] = map(lambda e: get_common_entry_data(e, 80), feed.entry)
return blog_dict
You will have to parse the html. A nice lib for doing that is BeautifulSoup. It will allow to remove specific tags and extract values (text between tags). The text can than be relatively easily cut down to four sentences, though I'd go for a fixed number of characters, as the sentence length might vary a lot.

Categories