Python Clustering 'purity' metric - python

I'm using a Gaussian Mixture Model (GMM) from sklearn.mixture to perform clustering of my data set.
I could use the function score() to compute the log probability under the model.
However, I am looking for a metric called 'purity' which is defined in this article.
How can I implement it in Python? My current implementation looks like this:
from sklearn.mixture import GMM
# X is a 1000 x 2 array (1000 samples of 2 coordinates).
# It is actually a 2 dimensional PCA projection of data
# extracted from the MNIST dataset, but this random array
# is equivalent as far as the code is concerned.
X = np.random.rand(1000, 2)
clusterer = GMM(3, 'diag')
clusterer.fit(X)
cluster_labels = clusterer.predict(X)
# Now I can count the labels for each cluster..
count0 = list(cluster_labels).count(0)
count1 = list(cluster_labels).count(1)
count2 = list(cluster_labels).count(2)
But I can not loop through each cluster in order to compute the confusion matrix (according this question)

David's answer works but here is another way to do it.
import numpy as np
from sklearn import metrics
def purity_score(y_true, y_pred):
# compute contingency matrix (also called confusion matrix)
contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
# return purity
return np.sum(np.amax(contingency_matrix, axis=0)) / np.sum(contingency_matrix)
Also if you need to compute Inverse Purity, all you need to do is replace "axis=0" by "axis=1".

sklearn doesn't implement a cluster purity metric. You have 2 options:
Implement the measurement using sklearn data structures yourself. This and this have some python source for measuring purity, but either your data or the function bodies need to be adapted for compatibility with each other.
Use the (much less mature) PML library, which does implement cluster purity.

A very late contribution.
You can try to implement it like this, pretty much like in this gist
def purity_score(y_true, y_pred):
"""Purity score
Args:
y_true(np.ndarray): n*1 matrix Ground truth labels
y_pred(np.ndarray): n*1 matrix Predicted clusters
Returns:
float: Purity score
"""
# matrix which will hold the majority-voted labels
y_voted_labels = np.zeros(y_true.shape)
# Ordering labels
## Labels might be missing e.g with set like 0,2 where 1 is missing
## First find the unique labels, then map the labels to an ordered set
## 0,2 should become 0,1
labels = np.unique(y_true)
ordered_labels = np.arange(labels.shape[0])
for k in range(labels.shape[0]):
y_true[y_true==labels[k]] = ordered_labels[k]
# Update unique labels
labels = np.unique(y_true)
# We set the number of bins to be n_classes+2 so that
# we count the actual occurence of classes between two consecutive bins
# the bigger being excluded [bin_i, bin_i+1[
bins = np.concatenate((labels, [np.max(labels)+1]), axis=0)
for cluster in np.unique(y_pred):
hist, _ = np.histogram(y_true[y_pred==cluster], bins=bins)
# Find the most present label in the cluster
winner = np.argmax(hist)
y_voted_labels[y_pred==cluster] = winner
return accuracy_score(y_true, y_voted_labels)

The currently top voted answer correctly implements the purity metric, but may not be the most appropriate metric in all cases, because it does not ensure that each predicted cluster label is assigned only once to a true label.
For example, consider a dataset that is very imbalanced, with 99 examples of one label and 1 example of another label. Then any clustering (e.g: having two equal clusters of size 50) will achieve purity of at least 0.99, rendering it a useless metric.
Instead, in cases where the number of clusters is the same as the number of labels, cluster accuracy may be more appropriate. This has the advantage of mirroring classification accuracy in an unsupervised setting. To compute cluster accuracy, we need to use the Hungarian algorithm to find the optimal matching between cluster labels and true labels. The SciPy function linear_sum_assignment does this:
import numpy as np
from sklearn import metrics
from scipy.optimize import linear_sum_assignment
def cluster_accuracy(y_true, y_pred):
# compute contingency matrix (also called confusion matrix)
contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
# Find optimal one-to-one mapping between cluster labels and true labels
row_ind, col_ind = linear_sum_assignment(-contingency_matrix)
# Return cluster accuracy
return contingency_matrix[row_ind, col_ind].sum() / np.sum(contingency_matrix)

Related

How can i generate three outlier points such that they are apparently far away from the normal data in python?

I am using make_moons dataset and I am trying to implement an outlier detection algorithm. That's why I want to generate 3 points which are away from normal data, and testify if they are outlier or not. These 3 points should be randomly selected from my data and should be far as possible from the normal data.
My algorithm will compare the distance between that point with theresold value and finds if it is an outlier or not.
I am aware of the other resources to do that, but my specific problem to do that, is my dataset. I could not find a way to fit the solutions to my dataset
Here is my code to define dataset and fit into K-Means(I have to use K-Means fitted data):
data = make_moons(n_samples=100,noise=0, random_state=0)
X,y=data
n_clusters=10
kmeans = KMeans(n_clusters = n_clusters,random_state=10)
kmeans.fit(X)
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
Shortly, how can i find farthest 3 points in my data, to use it in outlier detection?
As stated in the comments, you should define a criteria to classify outliers. Either way, in the following code, I randomly selected three entries from X and multiplied them by 1,000, so surely that should make them outliers regardless of the definition you choose.
# Import libraries
import numpy as np
from sklearn.datasets import make_moons
# Create data
X, y = make_moons(100, random_state=123)
# Randomly select 3 row numbers from X
np.random.seed(5)
idx = np.random.randint(low=0, high=len(df[0]) + 1, size=3)
# Overwrite the data from the randomly selected rows
for i in idx:
scaler = 1000 # Change this number to whatever you need
X[i] = X[i] * scaler
Note: There is a small probability that idx will have duplicates. It won't happen with np.random.seed(5), but if you choose another seed (or opt to not use one at all) and get duplicates, simply try another one or repeat until you don't get duplicates.

Unsupervised learning clustering 1D array

I am faced with the following array:
y = [1,2,4,7,9,5,4,7,9,56,57,54,60,200,297,275,243]
What I would like to do is extract the cluster with the highest scores. That would be
best_cluster = [200,297,275,243]
I have checked quite a few questions on stack on this topic and most of them recommend using kmeans. Although a few others mention that kmeans might be an overkill for 1D arrays clustering.
However kmeans is a supervised learnig algorithm, hence this means that I would have to pass in the number of centroids. As I need to generalize this problem to other arrays, I cannot pass the number of centroids for each one of them. Therefore I am looking at implementing some sort of unsupervised learning algorithm that would be able to figure out the clusters by itself and select the highest one.
In array y I would see 3 clusters as so [1,2,4,7,9,5,4,7,9],[56,57,54,60],[200,297,275,243].
What algorithm would best fit my needs, considering computation cost and accuracy and how could I implement it for my problem?
Try MeanShift. From the sklean user guide of MeanShift:
The algorithm automatically sets the number of clusters, ...
Modified demo code:
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
# #############################################################################
# Generate sample data
X = [1,2,4,7,9,5,4,7,9,56,57,54,60,200,297,275,243]
X = np.reshape(X, (-1, 1))
# #############################################################################
# Compute clustering with MeanShift
# The following bandwidth can be automatically detected using
# bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=100)
ms = MeanShift(bandwidth=None, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
print("number of estimated clusters : %d" % n_clusters_)
print(labels)
Output:
number of estimated clusters : 2
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]
Note that MeanShift is not scalable with the number of samples. The recommended upper limit is 10,000.
BTW, as rahlf23 already mentioned, K-mean is an unsupervised learning algorithm. The fact that you have to specify the number of clusters does not mean it is supervised.
See also:
Overview of clustering methods
Choosing the right estimator
Clustering is overkill here
Just compute the differences of subsequent elements. I.e. look at x[i]-x[i-1].
Choose the k largest differences as split points. Or define a threshold on when to split. E.g. 20. Depends on your data knowledge.
This is O(n), much faster than all the others mentioned. Also very understandable and predictable.
On one dimensional ordered data, any method that doesn't use the order will be slower than necessary.
HDBSCAN is the best clustering algorithm and you should always use it.
Basically all you need to do is provide a reasonable min_cluster_size, a valid distance metric and you're good to go.
For min_cluster_size I suggest using 3 since a cluster of 2 is lame and for metric the default euclidean works great so you don't even need to mention it.
Don't forget that distance metrics apply to vectors and here we have scalars so some ugly reshaping is in order.
To put it all together and assuming by "cluster with the highest scores" you mean the cluster that includes the max value we get:
from hdbscan import HDBSCAN
import numpy as np
y = [1,2,4,7,9,5,4,7,9,56,57,54,60,200,297,275,243]
y = np.reshape(y, (-1, 1))
clusterer = HDBSCAN(min_cluster_size=3)
cluster_labels = clusterer.fit_predict(y)
best_cluster = clusterer.exemplars_[cluster_labels[y.argmax()]].ravel()
print(best_cluster)
The output is [297 200 275 243]. Original order is not preserved. C'est la vie.

Fit mixture of Gaussians with fixed covariance in Python

I have some 2D data (GPS data) with clusters (stop locations) that I know resemble Gaussians with a characteristic standard deviation (proportional to the inherent noise of GPS samples). The figure below visualizes a sample that I expect has two such clusters. The image is 25 meters wide and 13 meters tall.
The sklearn module has a function sklearn.mixture.GaussianMixture which allows you to fit a mixture of Gaussians to data. The function has a parameter, covariance_type, that enables you to assume different things about the shape of the Gaussians. You can, for example, assume them to be uniform using the 'tied' argument.
However, it does not appear directly possible to assume the covariance matrices to remain constant. From the sklearn source code it seems trivial to make a modification that enables this but it feels a bit excessive to make a pull request with an update that allows this (also I don't want to accidentally add bugs in sklearn). Is there a better way to fit a mixture to data where the covariance matrix of each Gaussian is fixed?
I want to assume that the SD should remain constant at around 3 meters for each component, since that is roughly the noise level of my GPS samples.
It is simple enough to write your own implementation of EM algorithm. It would also give you a good intuition of the process. I assume that covariance is known and that prior probabilities of components are equal, and fit only means.
The class would look like this (in Python 3):
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
class FixedCovMixture:
""" The model to estimate gaussian mixture with fixed covariance matrix. """
def __init__(self, n_components, cov, max_iter=100, random_state=None, tol=1e-10):
self.n_components = n_components
self.cov = cov
self.random_state = random_state
self.max_iter = max_iter
self.tol=tol
def fit(self, X):
# initialize the process:
np.random.seed(self.random_state)
n_obs, n_features = X.shape
self.mean_ = X[np.random.choice(n_obs, size=self.n_components)]
# make EM loop until convergence
i = 0
for i in range(self.max_iter):
new_centers = self.updated_centers(X)
if np.sum(np.abs(new_centers-self.mean_)) < self.tol:
break
else:
self.mean_ = new_centers
self.n_iter_ = i
def updated_centers(self, X):
""" A single iteration """
# E-step: estimate probability of each cluster given cluster centers
cluster_posterior = self.predict_proba(X)
# M-step: update cluster centers as weighted average of observations
weights = (cluster_posterior.T / cluster_posterior.sum(axis=1)).T
new_centers = np.dot(weights, X)
return new_centers
def predict_proba(self, X):
likelihood = np.stack([multivariate_normal.pdf(X, mean=center, cov=self.cov)
for center in self.mean_])
cluster_posterior = (likelihood / likelihood.sum(axis=0))
return cluster_posterior
def predict(self, X):
return np.argmax(self.predict_proba(X), axis=0)
On the data like yours, the model would converge quickly:
np.random.seed(1)
X = np.random.normal(size=(100,2), scale=3)
X[50:] += (10, 5)
model = FixedCovMixture(2, cov=[[3,0],[0,3]], random_state=1)
model.fit(X)
print(model.n_iter_, 'iterations')
print(model.mean_)
plt.scatter(X[:,0], X[:,1], s=10, c=model.predict(X))
plt.scatter(model.mean_[:,0], model.mean_[:,1], s=100, c='k')
plt.axis('equal')
plt.show();
and output
11 iterations
[[9.92301067 4.62282807]
[0.09413883 0.03527411]]
You can see that the estimated centers ((9.9, 4.6) and (0.09, 0.03)) are close to the true centers ((10, 5) and (0, 0)).
I think the best option would be to "roll your own" GMM model by defining a new scikit-learn class that inherits from GaussianMixture and overwrites the methods to get the behavior you want. This way you just have an implementation yourself and you don't have to change the scikit-learn code (and create a pull-request).
Another option that might work is to look at the Bayesian version of GMM in scikit-learn. You might be able to set the prior for the covariance matrix so that the covariance is fixed. It seems to use the Wishart distribution as a prior for the covariance. However I'm not familiar enough with this distribution to help you out more.
First, you can use spherical option, which will give you single variance value for each component. This way you can check yourself, and if the received values of variance are too different then something went wrong.
In a case you want to preset the variance, you problem degenerates to finding only best centers for your components. You can do it by using k-means, for example. If you don't know the number of the components, you may sweep over all logical values (like 1 to 20) and evaluate the decrement in fitting error. Or you can optimize your own EM function, to find the centers and the number of components simultaneously.

How to obtain unnormalized responsibilities for GMM clusters?

I have trained a Gaussian Mixture Model with sklearn and I am trying to obtain the unnormalized responsibilities of a data point given the cluster means and variances.
GMM.predict_proba unfortunately returns the normalized probabilities such that they sum up to one but I need the raw ones.
I have tries the following (GMM is the fitted GM-model):
import numpy as np
from sklearn import mixture
lpr = (mixture.log_multivariate_normal_density(X, GMM.means_, GMM.covars_, GMM.covariance_type) + np.log(GMM.weights_))
probs = np.exp(lpr)
But the probabilities I obtained are bigger than 1.
What am I doing wrong?
lpr is the log probabilities of the Gaussian components. To convert to the probability of GMM, sum of theses in log space should be performed. The following code will explain this.
from sklearn.utils.extmath import logsumexp
lpr = (mixture.log_multivariate_normal_density(X, GMM.means_, GMM.covars_, GMM.covariance_type) + np.log(GMM.weights_)) # probabilities of components
logprob = logsumexp(lpr, axis=1) # logsum to get probability of GMM
probs = np.exp(logprob) # 0 < probs < 1

Build in function for plotting bayes decision boundary given the probability function

Is there a function in python, that plots bayes decision boundary if we input a function to it? I know there is one in matlab, but I'm searching for some function in python. I know that one way to achieve this is to iterate over the points, but I am searching for a built-in function.
I have bivariate sample points on the axis, and I want to plot the decision boundary in order to classify them.
Going off the guess of Chris in the comments above, I'm assuming you want to cluster points according to the Gaussian Mixture model - a reasonable method assuming the underlying distribution is a linear combination of Gaussian distributed samples. Below I've shown an example using numpy to create a sample data set, sklearn for it's GM modeling and pylab to show the results.
import numpy as np
from pylab import *
from sklearn import mixture
# Create some sample data
def G(mu, cov, pts):
return np.random.multivariate_normal(mu,cov,500)
# Three multivariate Gaussians with means and cov listed below
MU = [[5,3], [0,0], [-2,3]]
COV = [[[4,2],[0,1]], [[1,0],[0,1]], [[1,2],[2,1]]]
A = [G(mu,cov,500) for mu,cov in zip(MU,COV)]
PTS = np.concatenate(A) # Join them together
# Use a Gaussian Mixture model to fit
g = mixture.GMM(n_components=len(A))
g.fit(PTS)
# Returns an index list of which cluster they belong to
C = g.predict(PTS)
# Plot the original points
X,Y = map(array, zip(*PTS))
subplot(211)
scatter(X,Y)
# Plot the points and color according to the cluster
subplot(212)
color_mask = ['k','b','g']
for n in xrange(len(A)):
idx = (C==n)
scatter(X[idx],Y[idx],color=color_mask[n])
show()
See the sklearn.mixture example page for more detailed information on the classification methods.

Categories