Convert python to objective-c - python

So I'm trying to convert a some python to it's objective-c equivalent but i'm not having much luck.
The Python code is as follows:
def get_next_guess(passwords):
scores = {}
for candidate in passwords:
results = []
remainder = (x for x in passwords if x != candidate)
for correct_pw in remainder:
no_alternatives = len(refine(remainder, candidate, distance(candidate, correct_pw)))
print(no_alternatives)
results.append(no_alternatives)
scores[candidate] = max(results)
print(scores)
return min(scores, key = lambda x: scores[x])
And my current Objective-C code is:
void get_next_guess(NSMutableArray * passwords)
{
NSMutableDictionary * scores = [NSMutableDictionary new];
for (NSString* candidate in passwords)
{
NSMutableArray * results = [NSMutableArray new];
NSMutableArray * remainder = [NSMutableArray new];
for (NSString * x in passwords)
{
if (x != candidate)
{
[remainder addObject:x];
}
}
for (NSString * correct_pw in remainder)
{
NSUInteger no_alternatives = [refine(remainder, candidate, distance(candidate, correct_pw)) count];
NSNumber *n = [NSNumber numberWithInteger:no_alternatives];
[results addObject:n];
}
NSArray *sorted_Array = [results sortedArrayUsingDescriptors:
#[[NSSortDescriptor sortDescriptorWithKey:#"intValue"
ascending:YES]]];
[scores setObject:[sorted_Array lastObject] forKey:candidate];
}
NSLog(#"table: %#", scores);
}
I appreciate that the obj-c code is very rough, I'm just trying to get something that will work. The code is part of a puzzle solver i'm trying to create.
I suspect the (main) problem is around the obj-c version of:
remainder = (x for x in passwords if x != candidate)
The Obj-c version returns this:
table: {
COELOMS = 4;
HOLLOES = 4;
MYOLOGY = 5;
PADLOCK = 5;
PARTONS = 4;
PILINGS = 6;
POMPONS = 5;
PRECESS = 6;
PROSECT = 4;
SALLOWS = 4;
TOOLERS = 5;
TROILUS = 6;
}
And the Python version returns this:
{'PARTONS': 3,
'HOLLOES': 3,
'PADLOCK': 4,
'TOOLERS': 4,
'COELOMS': 3,
'PROSECT': 3,
'MYOLOGY': 4,
'PRECESS': 0,
'TROILUS': 5,
'SALLOWS': 3,
'PILINGS': 4,
'POMPONS': 2}
(the Python output being correct)

Change if (x != candidate) to if (![x isEqualToString: candidate]).

Related

Recoding from C to Python

I'm pretty much a layman in C and I'm learning Python. I need to write the routine described below (in C) for Python:
#include <stdio.h>
#include <math.h>
main()
{
float hold[26], hnew[26];
float dt, dx;
float t, s;
float ho;
float time;
float f1, d2h;
int i;
int nx, nlx;
int n, nend;
int kount, kprint;
dt = 5.0;
dx = 10.0;
t = 0.02;
s = 0.002;
nx = 11;
nlx = nx-1;
ho = 16.0;
for( i = 1; i <= nx; i++ )
{
hold[i] = ho;
hnew[i] = ho;
}
hold[nx] = 11.0;
printf("\t\t\t\thead\t\t\t\t time\n\n");
kount = 1;
kprint = 2;
time = dt;
nend = 100;
for( n = 1; n <= nend; n++ )
{
/* update solution */
for( i = 2; i <= nlx; i++ )
{
f1 = dt*t/s;
d2h = ( hold[i+1] - 2.0*hold[i] + hold[i-1])/(dx*dx);
hnew[i] = hold[i] + (f1*d2h);
}
for( i = 1; i <= nlx; i++ )
{
hold[i] = hnew[i];
}
if( kount == kprint )
{
for( i = 1; i <= nx; i++ )
{
printf(" %.2f",hold[i]);
}
printf(" %6.2f\n",time);
kount = 0;
}
time = time + dt;
kount = kount + 1;
}
}
This is my attempt at Python:
import numpy as np
dt = 5.0
dx = 10.0
t = 0.02
s = 0.002
nx = 11
nlx = nx - 1
ho = 16.0
hold = np.zeros(nx+1)
hnew = np.zeros(nx+1)
for i in range(nx):
hold[i] = ho
hnew[i] = ho
hold[nx] = 11.0
However, I can't get over this because I don't know the Python correspondent of the printf function. What would be the correct form of this function in Python? What does it reffer to?
Just print() in Python with .format.
For example:
x, y = 1, 2
print("x = {0}, y = {1}".format(x, y))
Here's the doc
To print similar to C's printf, the following is an example:
f = 3.25645
g = 3.14159265358979
for fl in (f,g):
print(f'{fl:.2f}')
3.26
3.14
The first f in the print is the format specifier. The f in the braces says to consider the number as a float.
it just print() (see a small program below)
squares = []
for x in range(14):
squares.append(x**2)
squares
squares2 = [x**2 for x in range(100)]
print (squares2)

CUDA: does size of input/output data have to be a multiple of the number of threads per block?

I have a Python code (for implementing RayTracing) that I'm running in parallel with PyCuda.
import pycuda.driver as drv
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy as np
from stl import mesh
import time
my_mesh = mesh.Mesh.from_file('test_solid_py.stl')
n = my_mesh.normals
v0 = my_mesh.v0
v1 = my_mesh.v1
v2 = my_mesh.v2
v0_x = v0[:,0]
v0_x = np.ascontiguousarray(v0_x)
v0_y = v0[:,1]
v0_y = np.ascontiguousarray(v0_y)
v0_z = v0[:,2]
v0_z = np.ascontiguousarray(v0_z)
v1_x = v1[:,0]
v1_x = np.ascontiguousarray(v1_x)
v1_y = v1[:,1]
v1_y = np.ascontiguousarray(v1_y)
v1_z = v1[:,2]
v1_z = np.ascontiguousarray(v1_z)
v2_x = v2[:,0]
v2_x = np.ascontiguousarray(v2_x)
v2_y = v2[:,1]
v2_y = np.ascontiguousarray(v2_y)
v2_z = v2[:,2]
v2_z = np.ascontiguousarray(v2_z)
mod = SourceModule("""
#include <math.h>
__global__ void intersect(float *origin,float *dir_x,float *dir_y,float *dir_z,float *v0_x,float *v0_y,float *v0_z,float *v1_x,float *v1_y,float *v1_z,float *v2_x,float *v2_y,float *v2_z,float *int_point_real_x, float *int_point_real_y,float *int_point_real_z)
{
using namespace std;
unsigned int idx = blockDim.x*blockIdx.x + threadIdx.x;
int count = 0;
float v0_current[3];
float v1_current[3];
float v2_current[3];
float dir_current[3] = {dir_x[idx],dir_y[idx],dir_z[idx]};
float int_point[3];
float int_pointS[2][3];
int int_faces[2];
float dist[2];
dist[0] = -999;
int n_tri = 105500;
for(int i = 0; i<n_tri; i++) {
v0_current[0] = v0_x[i];
v0_current[1] = v0_y[i];
v0_current[2] = v0_z[i];
v1_current[0] = v1_x[i];
v1_current[1] = v1_y[i];
v1_current[2] = v1_z[i];
v2_current[0] = v2_x[i];
v2_current[1] = v2_y[i];
v2_current[2] = v2_z[i];
double eps = 0.0000001;
float E1[3];
float E2[3];
float s[3];
for (int j = 0; j < 3; j++) {
E1[j] = v1_current[j] - v0_current[j];
E2[j] = v2_current[j] - v0_current[j];
s[j] = origin[j] - v0_current[j];
}
float h[3];
h[0] = dir_current[1] * E2[2] - dir_current[2] * E2[1];
h[1] = -(dir_current[0] * E2[2] - dir_current[2] * E2[0]);
h[2] = dir_current[0] * E2[1] - dir_current[1] * E2[0];
float a;
a = E1[0] * h[0] + E1[1] * h[1] + E1[2] * h[2];
if (a > -eps && a < eps) {
int_point[0] = false;
}
else {
double f = 1 / a;
float u;
u = f * (s[0] * h[0] + s[1] * h[1] + s[2] * h[2]);
if (u < 0 || u > 1) {
int_point[0] = false;
}
else {
float q[3];
q[0] = s[1] * E1[2] - s[2] * E1[1];
q[1] = -(s[0] * E1[2] - s[2] * E1[0]);
q[2] = s[0] * E1[1] - s[1] * E1[0];
float v;
v = f * (dir_current[0] * q[0] + dir_current[1] * q[1] + dir_current[2] * q[2]);
if (v < 0 || (u + v)>1) {
int_point[0] = false;
}
else {
float t;
t = f * (E2[0] * q[0] + E2[1] * q[1] + E2[2] * q[2]);
if (t > eps) {
for (int j = 0; j < 3; j++) {
int_point[j] = origin[j] + dir_current[j] * t;
}
//return t;
}
}
}
}
if (int_point[0] != false) {
count = count+1;
int_faces[count-1] = i;
dist[count-1] = sqrt(pow((origin[0] - int_point[0]), 2) + pow((origin[1] - int_point[1]), 2) + pow((origin[2] - int_point[2]), 2));
for (int j = 0; j<3; j++) {
int_pointS[count-1][j] = int_point[j];
}
}
}
double min = dist[0];
int ind_min = 0;
for (int i = 0; i < 2; i++){
if (min > dist[i]) {
min = dist[i];
ind_min = i;
}
}
if (dist[0] < -998){
int_point_real_x[idx] = -999;
int_point_real_y[idx] = -999;
int_point_real_z[idx] = -999;
}
else{
int_point_real_x[idx] = int_pointS[ind_min][0];
int_point_real_y[idx] = int_pointS[ind_min][1];
int_point_real_z[idx] = int_pointS[ind_min][2];
}
}
""")
n_rays = 20000
num_threads = 1024
num_blocks = int(n_rays/num_threads)
origin = np.asarray([-2, -2, -2]).astype(np.float32)
origin = np.ascontiguousarray(origin)
rand_x = np.random.randn(n_rays)
rand_y = np.random.randn(n_rays)
rand_z = np.random.randn(n_rays)
direction_x = np.ones((n_rays, 1)) * 3
direction_x = direction_x.astype(np.float32)
direction_x = np.ascontiguousarray(direction_x)
direction_y = np.ones((n_rays, 1)) * 4
direction_y = direction_y.astype(np.float32)
direction_y = np.ascontiguousarray(direction_y)
direction_z = np.ones((n_rays, 1)) * 5
direction_z = direction_z.astype(np.float32)
direction_z = np.ascontiguousarray(direction_z)
int_point_real_x = np.zeros((n_rays, 1)).astype(np.float32)
int_point_real_x = np.ascontiguousarray(int_point_real_x)
int_point_real_y = np.zeros((n_rays, 1)).astype(np.float32)
int_point_real_y = np.ascontiguousarray(int_point_real_y)
int_point_real_z = np.zeros((n_rays, 1)).astype(np.float32)
int_point_real_z = np.ascontiguousarray(int_point_real_z)
intersect = mod.get_function("intersect")
start = time.time()
intersect(drv.In(origin), drv.In(direction_x),drv.In(direction_y),drv.In(direction_z),drv.In(v0_x),drv.In(v0_y),drv.In(v0_z), drv.In(v1_x),drv.In(v1_y),drv.In(v1_z), drv.In(v2_x), drv.In(v2_y), drv.In(v2_z), drv.Out(int_point_real_x),drv.Out(int_point_real_y),drv.Out(int_point_real_z), block=(num_threads, 1, 1), grid=((num_blocks+0), 1, 1))
finish = time.time()
print(finish-start)
I give as input some arrays whose size is 20k (dir_x, dir_y, dir_z) and I have as output 3 arrays (int_point_real_x,int_point_real_y,int_point_real_z) that have the same size as the above mentioned arrays (20k).
If n_rays is a multiple of num_threads, e.g. n_rays=19456 and num_threads=1024, then int_point_real_x_y_z are correctly filled by the kernel.
Otherwise, if n_rays is NOT a multiple of num_threads, e.g. n_rays=20000 (what I really need) and num_threads=1024, then int_point_real_x_y_z are filled by the kernel up to position 19455 and the 544 spots left in the array are not filled.
Does anyone know if this is a rule of CUDA?
If it's not, how could I modify my code in order to use an arbitrary size of input array (and not only multiple of num_threads)?
Thanks
your int(n_rays/num_threads) is rounding down
to fix this, you need to round up and then put a condition into the kernel to enforce that idx is valid and "do nothing" if it's not. this will cause some cores to waste time, but your code looks pretty suboptimal anyway so it probably won't matter much

Scraping of protected email

I need to scrape emails from the website.
It's visible in a browser but when I try to scrape it with requests\BeautifulSoup I get this: "[email protected]"
I can do this with Selenium but it will take more time and I would like to know is it possible to scrape these emails with requests\BeautifulSoup? Maybe it's needed to use some libraries for working with js.
The email tag:
<span id="signature_email"><a class="__cf_email__" href="/cdn-cgi/l/email-protection" data-cfemail="30425f5e70584346515c5c531e535f5d">[email protected]</a><script data-cfhash='f9e31' type="text/javascript">/* <![CDATA[ */!function(t,e,r,n,c,a,p){try{t=document.currentScript||function(){for(t=document.getElementsByTagName('script'),e=t.length;e--;)if(t[e].getAttribute('data-cfhash'))return t[e]}();if(t&&(c=t.previousSibling)){p=t.parentNode;if(a=c.getAttribute('data-cfemail')){for(e='',r='0x'+a.substr(0,2)|0,n=2;a.length-n;n+=2)e+='%'+('0'+('0x'+a.substr(n,2)^r).toString(16)).slice(-2);p.replaceChild(document.createTextNode(decodeURIComponent(e)),c)}p.removeChild(t)}}catch(u){}}()/* ]]> */</script></span></span> <span class="separator">|</span>
From the CF tag, in your supplied html, I assume you are scraping a cloudflare site. They offer a feature to obfuscate emails listed (see here) which encrypts the addresses in the HTML and using JavaScript decrypts them. Hence, using selenium you'll see email-addresses but using requests you won't.
Since the decryption method can be easily taken from the JavaScript, you can write your own decryption method in Python.
In JavaScript,
(function () {
try {
var s, a, i, j, r, c, l = document.getElementById("__cf_email__");
a = l.className;
if (a) {
s = '';
r = parseInt(a.substr(0, 2), 16);
for (j = 2; a.length - j; j += 2) {
c = parseInt(a.substr(j, 2), 16) ^ r;
s += String.fromCharCode(c);
}
s = document.createTextNode(s);
l.parentNode.replaceChild(s, l);
}
} catch (e) {}
})();
In Python,
def decodeEmail(e):
de = ""
k = int(e[:2], 16)
for i in range(2, len(e)-1, 2):
de += chr(int(e[i:i+2], 16)^k)
return de
Code In all Languages is here:
Javascript
function cfDecodeEmail(encodedString) {
var email = "", r = parseInt(encodedString.substr(0, 2), 16), n, i;
for (n = 2; encodedString.length - n; n += 2){
i = parseInt(encodedString.substr(n, 2), 16) ^ r;
email += String.fromCharCode(i);
}
return email;
}
console.log(cfDecodeEmail("543931142127353935313e352e7a373b39")); // usage
Python
def cfDecodeEmail(encodedString):
r = int(encodedString[:2],16)
email = ''.join([chr(int(encodedString[i:i+2], 16) ^ r) for i in range(2, len(encodedString), 2)])
return email
print cfDecodeEmail('543931142127353935313e352e7a373b39') # usage
PHP
function cfDecodeEmail($encodedString){
$k = hexdec(substr($encodedString,0,2));
for($i=2,$email='';$i<strlen($encodedString)-1;$i+=2){
$email.=chr(hexdec(substr($encodedString,$i,2))^$k);
}
return $email;
}
echo cfDecodeEmail('543931142127353935313e352e7a373b39'); // usage
GO
package main
import (
"bytes"
"strconv"
)
func cf(a string) (s string) {
var e bytes.Buffer
r, _ := strconv.ParseInt(a[0:2], 16, 0)
for n := 4; n < len(a)+2; n += 2 {
i, _ := strconv.ParseInt(a[n-2:n], 16, 0)
e.WriteString(string(i ^ r))
}
return e.String()
}
func main() {
email := cf("543931142127353935313e352e7a373b39") // usage
print(email)
print("\n")
}
C++
#include <iostream>
#include <string>
using namespace std;
string cfDecodeEmail(string encodedString);
int main()
{
cout << cfDecodeEmail("543931142127353935313e352e7a373b39") << endl;
}
string cfDecodeEmail(string encodedString)
{
string email;
char xorKey = stoi( encodedString.substr(0, 2), nullptr, 16);
for( unsigned i = 2; i < encodedString.length(); i += 2)
email += stoi( encodedString.substr(i, 2), nullptr, 16) ^ xorKey;
return email;
}
C#
using System;
public class Program
{
public static string cfDecodeEmail(string encodedString)
{
string email = "";
int r = Convert.ToInt32(encodedString.Substring(0, 2), 16), n, i;
for (n = 2; encodedString.Length - n > 0; n += 2)
{
i = Convert.ToInt32(encodedString.Substring(n, 2), 16) ^ r;
char character = (char)i;
email += Convert.ToString(character);
}
return email;
}
public static void Main(string[] args)
{
Console.WriteLine(cfDecodeEmail("543931142127353935313e352e7a373b39")); // usage
}
}
According to above algorithm, I wrote code in Ruby to parse [protected email] with nokogiri
def decode_email(e)
r = Integer(e[0,2], 16)
(2..e.length - 2).step(2).map do |j|
c = Integer(e[j,2], 16) ^ r
c.chr
end.join('')
end

Java to Python Code Not Working

I am trying to convert the Java Code to Python Code and i have done it so far. Java Code works but Python Code doesn't work. Please help me.
Python Code
import random
class QLearning():
alpha = 0.1
gamma = 0.9
state_a = 0
state_b = 1
state_c = 2
state_d = 3
state_e = 4
state_f = 5
states_count = 6
states = [state_a, state_b, state_c, state_d, state_e, state_f]
R = [[0 for x in range(states_count)] for x in range(states_count)]
Q = [[0 for x in range(states_count)] for x in range(states_count)]
action_from_a = [state_b, state_d]
action_from_b = [state_a, state_c, state_e]
action_from_c = [state_c]
action_from_d = [state_a, state_e]
action_from_e = [state_b, state_d, state_f]
action_from_f = [state_c, state_e]
actions = [action_from_a, action_from_b, action_from_c, action_from_d, action_from_e, action_from_f]
state_names = ["A","B","C","D","E","F"]
def __init__(self):
self.R[self.state_b][self.state_c] = 100
self.R[self.state_f][self.state_c] = 100
def run(self):
for i in range(1000):
state = random.randrange(self.states_count)
while(state != self.state_c):
actions_from_state = self.actions[state]
index = random.randrange(len(actions_from_state))
action = actions_from_state[index]
next_state = action
q = self.Q_Value(state, action)
max_Q = self.max_q(next_state)
r = self.R_Value(state, action)
value = q + self.alpha * (r + self.gamma * max_Q - q)
self.set_q(state, action, value)
state = next_state
def max_q(self, s):
self.run().actions_from_state = self.actions[s]
max_value = 5
for i in range(len(self.run().actions_from_state)):
self.run().next_state = self.run().actions_from_state[i]
self.run().value = self.Q[s][self.run().next_state]
if self.run().value > max_value:
max_value = self.run().value
return max_value
def policy(self, state):
self.run().actions_from_state = self.actions[state]
max_value = 5
policy_goto_state = state
for i in range(len(self.run().actions_from_state)):
self.run().next_state = self.run().actions_from_state[i]
self.run().value = self.Q[state][self.run().next_state]
if self.run().value > max_value:
max_value = self.run().value
policy_goto_state = self.run().next_state
return policy_goto_state
def Q_Value(self, s,a):
return self.Q[s][a]
def set_q(self, s, a, value):
self.Q[s][a] = value
def R_Value(self, s, a):
return self.R[s][a]
def print_result(self):
print("Print Result")
for i in range(len(self.Q)):
print("Out From (0)".format(self.state_names[i]))
for j in range(len(self.Q[i])):
print(self.Q[i][j])
def show_policy(self):
print("Show Policy")
for i in range(len(self.states)):
fro = self.states[i]
to = self.policy(fro)
print("From {0} goto {1}".format(self.state_names[fro], self.state_names[to]))
obj = QLearning()
obj.run()
obj.print_result()
obj.show_policy()
Java Code
import java.text.DecimalFormat;
import java.util.Random;
public class Qlearning {
final DecimalFormat df = new DecimalFormat("#.##");
// path finding
final double alpha = 0.1;
final double gamma = 0.9;
// states A,B,C,D,E,F
// e.g. from A we can go to B or D
// from C we can only go to C
// C is goal state, reward 100 when B->C or F->C
//
// _______
// |A|B|C|
// |_____|
// |D|E|F|
// |_____|
//
final int stateA = 0;
final int stateB = 1;
final int stateC = 2;
final int stateD = 3;
final int stateE = 4;
final int stateF = 5;
final int statesCount = 6;
final int[] states = new int[]{stateA,stateB,stateC,stateD,stateE,stateF};
// http://en.wikipedia.org/wiki/Q-learning
// http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/Q-Learning.htm
// Q(s,a)= Q(s,a) + alpha * (R(s,a) + gamma * Max(next state, all actions) - Q(s,a))
int[][] R = new int[statesCount][statesCount]; // reward lookup
double[][] Q = new double[statesCount][statesCount]; // Q learning
int[] actionsFromA = new int[] { stateB, stateD };
int[] actionsFromB = new int[] { stateA, stateC, stateE };
int[] actionsFromC = new int[] { stateC };
int[] actionsFromD = new int[] { stateA, stateE };
int[] actionsFromE = new int[] { stateB, stateD, stateF };
int[] actionsFromF = new int[] { stateC, stateE };
int[][] actions = new int[][] { actionsFromA, actionsFromB, actionsFromC,
actionsFromD, actionsFromE, actionsFromF };
String[] stateNames = new String[] { "A", "B", "C", "D", "E", "F" };
public Qlearning() {
init();
}
public void init() {
R[stateB][stateC] = 100; // from b to c
R[stateF][stateC] = 100; // from f to c
}
public static void main(String[] args) {
long BEGIN = System.currentTimeMillis();
Qlearning obj = new Qlearning();
obj.run();
obj.printResult();
obj.showPolicy();
long END = System.currentTimeMillis();
System.out.println("Time: " + (END - BEGIN) / 1000.0 + " sec.");
}
void run() {
/*
1. Set parameter , and environment reward matrix R
2. Initialize matrix Q as zero matrix
3. For each episode: Select random initial state
Do while not reach goal state o
Select one among all possible actions for the current state o
Using this possible action, consider to go to the next state o
Get maximum Q value of this next state based on all possible actions o
Compute o Set the next state as the current state
*/
// For each episode
Random rand = new Random();
for (int i = 0; i < 1000; i++) { // train episodes
// Select random initial state
int state = rand.nextInt(statesCount);
while (state != stateC) // goal state
{
// Select one among all possible actions for the current state
int[] actionsFromState = actions[state];
// Selection strategy is random in this example
int index = rand.nextInt(actionsFromState.length);
int action = actionsFromState[index];
// Action outcome is set to deterministic in this example
// Transition probability is 1
int nextState = action; // data structure
// Using this possible action, consider to go to the next state
double q = Q(state, action);
double maxQ = maxQ(nextState);
int r = R(state, action);
double value = q + alpha * (r + gamma * maxQ - q);
setQ(state, action, value);
// Set the next state as the current state
state = nextState;
}
}
}
double maxQ(int s) {
int[] actionsFromState = actions[s];
double maxValue = Double.MIN_VALUE;
for (int i = 0; i < actionsFromState.length; i++) {
int nextState = actionsFromState[i];
double value = Q[s][nextState];
if (value > maxValue)
maxValue = value;
}
return maxValue;
}
// get policy from state
int policy(int state) {
int[] actionsFromState = actions[state];
double maxValue = Double.MIN_VALUE;
int policyGotoState = state; // default goto self if not found
for (int i = 0; i < actionsFromState.length; i++) {
int nextState = actionsFromState[i];
double value = Q[state][nextState];
if (value > maxValue) {
maxValue = value;
policyGotoState = nextState;
}
}
return policyGotoState;
}
double Q(int s, int a) {
return Q[s][a];
}
void setQ(int s, int a, double value) {
Q[s][a] = value;
}
int R(int s, int a) {
return R[s][a];
}
void printResult() {
System.out.println("Print result");
for (int i = 0; i < Q.length; i++) {
System.out.print("out from " + stateNames[i] + ": ");
for (int j = 0; j < Q[i].length; j++) {
System.out.print(df.format(Q[i][j]) + " ");
}
System.out.println();
}
}
// policy is maxQ(states)
void showPolicy() {
System.out.println("\nshowPolicy");
for (int i = 0; i < states.length; i++) {
int from = states[i];
int to = policy(from);
System.out.println("from "+stateNames[from]+" goto "+stateNames[to]);
}
}
}
Traceback
C:\Python33\python.exe "C:/Users/Ajay/Documents/Python Scripts/RL/QLearning.py"
Traceback (most recent call last):
File "C:/Users/Ajay/Documents/Python Scripts/RL/QLearning.py", line 4, in <module>
class QLearning():
File "C:/Users/Ajay/Documents/Python Scripts/RL/QLearning.py", line 19, in QLearning
R = [[0 for x in range(states_count)] for x in range(states_count)]
File "C:/Users/Ajay/Documents/Python Scripts/RL/QLearning.py", line 19, in <listcomp>
R = [[0 for x in range(states_count)] for x in range(states_count)]
NameError: global name 'states_count' is not defined
To access all of the class attributes you define (i.e. everything between class QLearning and def __init__), you need to use self or the class name:
self.states_count
or
QLearning.states_count
I don't know the algorithm, but it is possible that these class attributes should be instance attributes (i.e. separate for each instance of the class, rather than shared amongst all instances) and therefore defined in __init__ (or other instance methods) using self anyway.

python RSA implemention with PKCS1

I got the following code in javascript for RSA implementionhttp://www-cs-students.stanford.edu/~tjw/jsbn/:
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
function RSAEncrypt(text) {
var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
if(m == null) return null;
var c = this.doPublic(m);
if(c == null) return null;
var h = c.toString(16);
if((h.length & 1) == 0) return h; else return "0" + h;
}
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s,n) {
if(n < s.length + 11) { // TODO: fix for utf-8
alert("Message too long for RSA");
return null;
}
var ba = new Array();
var i = s.length - 1;
while(i >= 0 && n > 0) {
var c = s.charCodeAt(i--);
if(c < 128) { // encode using utf-8
ba[--n] = c;
}
else if((c > 127) && (c < 2048)) {
ba[--n] = (c & 63) | 128;
ba[--n] = (c >> 6) | 192;
}
else {
ba[--n] = (c & 63) | 128;
ba[--n] = ((c >> 6) & 63) | 128;
ba[--n] = (c >> 12) | 224;
}
}
ba[--n] = 0;
var rng = new SecureRandom();
var x = new Array();
while(n > 2) { // random non-zero pad
x[0] = 0;
while(x[0] == 0) rng.nextBytes(x);
ba[--n] = x[0];
}
ba[--n] = 2;
ba[--n] = 0;
return new BigInteger(ba);
}
In the snippets above, it seems that the pkcs1pad2 function is used for padding the message with some random bytes(maybe sth like 0|2|random|0 ) in front of the message.
I'm using the python rsa package (http://stuvel.eu/rsa) for imitating the javascript result, i'm a newbie to python world and have no idea to traslate javascript algorithm code to the python code.
Any help would be appreciated.
Jiee
I know it's a bit late, but in a few days I'll release a new version of my Python-RSA package. That version will include PKCS#1 v1.5 padding, so it should be compatible with your JavaScript code ;-)

Categories