Here I have a text file. I want to read Adress, Beneficiary, Beneficiary Bank, Acc Nbr, Total US$, Date which is at the top, RUT, BOX. I tried writing some code by myself but I am not able to correctly get the required information and moreover if the length of character changes I will not get correct output. How should I do this such that I will get every required information in a particular string.
The main problem will arise when my slicings will go wrong. For eg: I am using line[31:] for Acc Nbr. But if the address change then my slicing will also go wrong
My Text.txt
2014-11-09 BOX 1531 20140908123456 RUT 21 654321 0123
Girry S.A. CONTADO
G 5 Y Serie A
NO 098765
11 al Rayo 321 - Oqwerty 108 Monteaudio - Gruguay
Pharm Cosco, Inc - Britania PO Box 43215
Dirección Hot Springs AR 71903 - Estados Unidos
Oescripción Importe
US$
DO 7640183 - 50% of the Production Degree 246,123
Beneficiary Bank: Bankue Heritage (Gruguay) S.A Account Nbr: 1234563 Swift: MANIUYMM
Adress: Tencon 108 Monteaudio, Gruguay.
Beneficiary: Girry SA Acc Nbr: 1234567
Servicios prestados en el exterior, exentos de IVA o IRAE
Subtotal US$ 102,500
Iva US$ ---------------
Total US$ 102,500
I.V.A AL DIA Fecha de Vencimiento
IMPRENTA IRIS LTDA. - RUT 210161234015 - 0/40987 17/11/2015
CONSTANCIA N9 1234559842 -04/2013
CONTADO A 000.001/ A 000.050 x 2 VIAS
QWERTYAS ZXCVBIZADA
R. U.T. Bamprador Asdfumldor Final
Fecha 12/12/2014
1º ORIGINAL CLLLTE (Blanco) 2º CASIA AQWERVO (Rosasd)
My Code:
txt = 'Text.txt'
lines = [line.rstrip('\n') for line in open(txt)]
for line in lines:
if 'BOX' in line:
Date = line.split("BOX")[0]
BOX = line.split('BOX ', 1)[-1].split("RUT")[0]
RUT = line.split('RUT ',1)[-1]
print 'Date : ' + Date
print 'BOX : ' + BOX
print 'RUT : ' + RUT
if 'Adress' in line:
Adress = line[8:]
print 'Adress : ' + Adress
if 'NO ' in line:
Invoice_No = line.split('NO ',1)[-1]
print 'Invoice_No : ' + Invoice_No
if 'Swift:' in line:
Swift = line.split('Swift: ',1)[-1]
print 'Swift : ' + Swift
if 'Fecha' in line and '/' in line:
Invoice_Date = line.split('Fecha ',1)[-1]
print 'Invoice_Date : ' + Invoice_Date
if 'Beneficiary Bank' in line:
Beneficiary_Bank = line[18:]
Ben_Acc_Nbr = line.split('Nbr: ', 1)[-1]
print 'Beneficiary_Bank : ' + Beneficiary_Bank.split("Acc")[0]
print 'Ben_Acc_Nbr : ' + Ben_Acc_Nbr.split("Swift")[0]
if 'Beneficiary' in line and 'Beneficiary Bank' not in line:
Beneficiary = line[13:]
print 'Beneficiary : ' + Beneficiary.split("Acc")[0]
if 'Acc Nbr' in line:
Acc_Nbr = line.split('Nbr: ', 1)[-1]
print 'Acc_Nbr : ' + Acc_Nbr
if 'Total US$' in line:
Total_US = line.split('US$ ', 1)[-1]
print 'Total_US : ' + Total_US
Output:
Date : 2014-11-09
BOX : 1531 20140908123456
RUT : 21 654321 0123
Invoice_No : 098765
Swift : MANIUYMM
Beneficiary_Bank : Bankue Heritage (Gruguay) S.A
Ben_Acc_Nbr : 1234563
Adress : Tencon 108 Monteaudio, Gruguay.
Beneficiary : Girry SA
Acc_Nbr : 1234567
Total_US : 102,500
Invoice_Date : 12/12/2014
Some Code Changes
I have made some changes but still I am not convinced as I need to provide spaces also in split.
I would recommend you to use regular expressions to extract information you need. It helps to avoid the calculation of the numbers of offset characters.
import re
with open('C:\Quad.txt') as f:
for line in f:
match = re.search(r"Acc Nbr: (.*?)", line)
if match is not None:
Acc_Nbr = match.group(1)
print Acc_Nbr
# etc...
you can search to obtain index of it. for example:
if 'Acc Nbr' in line:
Acc_Nbr = line[line.find("Acc Nbr") + 10:]
print Acc_Nbr
note that find gives you index of first char of item you searched.
Related
I'm using the txt file: https://drive.google.com/file/d/1-VrWf7aqiqvnshVQ964zYsqaqRkcUoL1/view?usp=sharin
I'm running the script:
data = f.read()
ny_sum=0
ny_count=0
sf_sum=0
sf_count=0
for line in data.split('\n'):
print(line)
parts = line.split('\t')
city = parts[2]
amount = float(parts[4])
if city == 'San Francisco':
sf_sum = sf_sum + amount
elif city == 'New York':
ny_sum = ny_sum + amount
ny_count = ny_count + 1
ny_avg = ny_sum / ny_count
sf_avg = sf_sum / sf_count
#print(ny_avg, sf_avg)
f = open('result_file.txt', 'w')
f.write('The average transaction amount based on {} transactions in New York is {}\n'.format(ny_count, ny_avg))
f.write('The average transaction amount based on {} transactions in San Francisco is {}\n'.format(sf_count, sf_avg))
if ny_avg>sf_avg:
f.write('New York has higher average transaction amount than San Francisco\n')
else:
f.write('San Francisco has higher average transaction amount than New York\n')
f.close()
And I ALWAYS get the error:
ValueError: could not convert string to float: ''
I'm pretty new-ish to Python and I'm really not sure what I'm doing wrong here. I'm trying to get averages for New York and San Francisco, then export the results AND the comparison to a txt results file
This should give you what you're looking for:
from collections import defaultdict as DD
with open('New Purchases.txt') as pfile:
sums = DD(lambda: [0.0, 0])
for line in [line.split('\t') for line in pfile]:
try:
k = line[2]
sums[k][0] += float(line[4])
sums[k][1] += 1
except Exception:
pass
for k in ['San Francisco', 'New York']:
v = sums.get(k, [0.0, 1])
print(f'Average for {k} = ${v[0]/v[1]:.2f}')
I have re-arranged the code. I agree with BrutusFocus that the splits are making it difficult to read exactly the location on each row. I have set it so if it sees the location at any point in the row, it counts it.
with open("data.txt", "r") as f:
data = f.read()
ny_sum=0
ny_count=0
sf_sum=0
sf_count=0
for line in data.split('\n'):
parts = line.split('\t')
city = parts[2]
amount = float(parts[4])
print(city, amount)
if "New York" in line:
ny_sum = ny_sum + amount
ny_count = ny_count + 1
elif "San Francisco" in line:
sf_sum = sf_sum + amount
sf_count = sf_count + 1
ny_avg = ny_sum / ny_count
sf_avg = sf_sum / sf_count
#print(ny_avg, sf_avg)
f = open('result_file.txt', 'w')
f.write('The average transaction amount based on {} transactions in New York is
{}\n'.format(ny_count, ny_avg))
f.write('The average transaction amount based on {} transactions in San
Francisco is {}\n'.format(sf_count, sf_avg))
if ny_avg>sf_avg:
f.write('New York has higher average transaction amount than San Francisco\n')
else:
f.write('San Francisco has higher average transaction amount than New York\n')
f.close()
Text mining attempts here, I would like to turn the below:
a=['Colors.of.the universe:\n',
' Black: 111\n',
' Grey: 222\n',
' White: 11\n'
'Movies of the week:\n',
' Mission Impossible: 121\n',
' Die_Hard: 123\n',
' Jurassic Park: 33\n',
'Lands.categories.said:\n',
' Desert: 33212\n',
' forest: 4532\n',
' grassland : 431\n',
' tundra : 243451\n']
to this:
{'Colors.of.the universe':{Black:111,Grey:222,White:11},
'Movies of the week':{Mission Impossible:121,Die_Hard:123,Jurassic Park:33},
'Lands.categories.said': {Desert:33212,forest:4532,grassland:431,tundra:243451}}
Tried this code below but it was not good:
{words[1]:words[1:] for words in a}
which gives
{'o': 'olors.of.the universe:\n',
' ': ' tundra : 243451\n',
'a': 'ands.categories.said:\n'}
It only takes the first word as the key which is not what's needed.
A dict comprehension is an interesting approach.
a = ['Colors.of.the universe:\n',
' Black: 111\n',
' Grey: 222\n',
' White: 11\n',
'Movies of the week:\n',
' Mission Impossible: 121\n',
' Die_Hard: 123\n',
' Jurassic Park: 33\n',
'Lands.categories.said:\n',
' Desert: 33212\n',
' forest: 4532\n',
' grassland : 431\n',
' tundra : 243451\n']
result = dict()
current_key = None
for w in a:
# If starts with tab - its an item (under category)
if w.startswith(' '):
# Splitting item (i.e. ' Desert: 33212\n' -> [' Desert', ' 33212\n']
splitted = w.split(':')
# Setting the key and the value of the item
# Removing redundant spaces and '\n'
# Converting value to number
k, v = splitted[0].strip(), int(splitted[1].replace('\n', ''))
result[current_key][k] = v
# Else, it's a category
else:
# Removing ':' and '\n' form category name
current_key = w.replace(':', '').replace('\n', '')
# If category not exist - create a dictionary for it
if not current_key in result.keys():
result[current_key] = {}
# {'Colors.of.the universe': {'Black': 111, 'Grey': 222, 'White': 11}, 'Movies of the week': {'Mission Impossible': 121, 'Die_Hard': 123, 'Jurassic Park': 33}, 'Lands.categories.said': {'Desert': 33212, 'forest': 4532, 'grassland': 431, 'tundra': 243451}}
print(result)
That's really close to valid YAML already. You could just quote the property labels and parse. And parsing a known format is MUCH superior to dealing with and/or inventing your own. Even if you're just exploring base python, exploring good practices is just as (probably more) important.
import re
import yaml
raw = ['Colors.of.the universe:\n',
' Black: 111\n',
' Grey: 222\n',
' White: 11\n',
'Movies of the week:\n',
' Mission Impossible: 121\n',
' Die_Hard: 123\n',
' Jurassic Park: 33\n',
'Lands.categories.said:\n',
' Desert: 33212\n',
' forest: 4532\n',
' grassland : 431\n',
' tundra : 243451\n']
# Fix spaces in property names
fixed = []
for line in raw:
match = re.match(r'^( *)(\S.*?): ?(\S*)\s*', line)
if match:
fixed.append('{indent}{safe_label}:{value}'.format(
indent = match.group(1),
safe_label = "'{}'".format(match.group(2)),
value = ' ' + match.group(3) if match.group(3) else ''
))
else:
raise Exception("regex failed")
parsed = yaml.load('\n'.join(fixed), Loader=yaml.FullLoader)
print(parsed)
I have a complex list of lists that looks like that :
[[['MARIA DUPONT',
' infos : ',
[' age = 28',
' yeux = bleus',
' sexe = femme']],
[' + ']],
[['PATRICK MARTIN',
' infos : ',
[' age = 53',
' yeux = marrons',
' sexe = homme']],
[' + ']],
[['JULIE SMITH',
' infos : ',
[' age = 17',
'yeux = verts',
'sexe = femme']],
[' fin ']]]
I am trying to transform it into a string. At the end I want to print that :
MARIA DUPONT,
infos :
age = 28
yeux = bleus
sexe = femme
+
PATRICK MARTIN
infos :
age = 53
yeux = marrons
sexe = homme
+
JULIE SMITH
infos :
age = 17
yeux = verts
sexe = femme
fin
My real data are more complicated and I have lists into level 5.
So I am looking for a way to solve the problem I explained to be able to adapt it and apply it to my real data.
I am trying with
''.join(list)
and
''.join(x for x in list)
But in both cases I have the error TypeError: list indices must be integers or slices, not list
I've tryed other ways but now I'm confused and I didn't found a good solution to reach my goal.
Any help would be appreciated, and thanks in advance. (and sorry for my bad english!)
You can use str.join with a single pass over the lists:
data = [[['MARIA DUPONT', ' infos : ', [' age = 28', ' yeux = bleus', ' sexe = femme']], [' + ']], [['PATRICK MARTIN', ' infos : ', [' age = 53', ' yeux = marrons', ' sexe = homme']], [' + ']], [['JULIE SMITH', ' infos : ', [' age = 17', 'yeux = verts', 'sexe = femme']], [' fin ']]]
r = '\n'.join('\n'.join([a, b, *c, f'\n{k}\n']) for [a, b, c], [k] in data)
Output:
MARIA DUPONT
infos :
age = 28
yeux = bleus
sexe = femme
+
PATRICK MARTIN
infos :
age = 53
yeux = marrons
sexe = homme
+
JULIE SMITH
infos :
age = 17
yeux = verts
sexe = femme
fin
If your lists are arbitrarily nested, then you can use recursion with a generator:
def flatten(d):
if isinstance(d, str):
yield d
else:
yield from [i for b in d for i in flatten(b)]
print('\n'.join(flatten(data)))
.join() won't work with a list in the list. I can offer you a solution based on recursion.
def list_to_str(_list):
result = ""
if isinstance(_list, list):
for l in _list:
result += list_to_str(l)
else:
result += _list
return result
result_string = list_to_str(your_list)
print(result_string)
I can't tell if you have a list with varying levels of lists but if so, you would probably need a conditional to see if the list goes further and recursively iterate the list.
def convert_list(dataset):
result = ''
for element in dataset:
if isinstance(element, list):
result += convert_list(element)
else:
result += str(element)
return result
This will not print the newlines you want but it does return the list as a string.
Write a recursive function to get inside your lists like below:
def print_data(input_list):
for obj in input_list:
if isinstance(obj, list):
print_data(obj)
else:
print(obj)
input_list = [[['MARIA DUPONT',
' infos : ',
[' age = 28',
' yeux = bleus',
' sexe = femme']],
[' + ']],
[['PATRICK MARTIN',
' infos : ',
[' age = 53',
' yeux = marrons',
' sexe = homme']],
[' + ']],
[['JULIE SMITH',
' infos : ',
[' age = 17',
'yeux = verts',
'sexe = femme']],
[' fin ']]]
print_data(input_list)
I have a CSV file with each line containing information pertaining to a particular tweet (i.e. each line contains Lat, Long, User_ID, tweet and so on). I need to read the file and organize the tweets by the User_ID. I am trying to end up with a given User_ID attached to all of the tweets with that specific ID.
Here is what I want:
user_id: 'lat', 'long', 'tweet'
: 'lat', 'long', 'tweet'
user_id2: 'lat', 'long', 'tweet'
: 'lat', 'long', 'tweet'
: 'lat', 'long', 'tweet'
and so on...
This is a snip of my code that reads in the CSV file and creates a list:
UID = []
myID = []
ID = []
f = None
with open(csv_in,'rU') as f:
myreader = csv.reader(f, delimiter=',')
for row in myreader:
# Assign columns in csv to variables.
latitude = row[0]
longitude = row[1]
user_id = row[2]
user_name = row[3]
date = row[4]
time = row[5]
tweet = row[6]
flag = row[7]
compound = row[8]
Vote = row[9]
# Read variables into separate lists.
UID.append(user_id + ', ' + latitude + ', ' + longitude + ', ' + user_name + ', ' + date + ', ' + time + ', ' + tweet + ', ' + flag + ', ' + compound)
myID = ', '.join(UID)
ID = myID.split(', ')
I'd suggest you use pandas for this. It will allow you not only to list your tweets by user_id, as in your question, but also to do many other manipulations quite easily.
As an example, take a look at this python notebook from NLTK. At the end of it, you see an operation very closed to yours, reading a csv file containing tweets,
In [25]:
import pandas as pd
tweets = pd.read_csv('tweets.20150430-223406.tweet.csv', index_col=2, header=0, encoding="utf8")
You can also find a simple operation: looking for the tweets of a certain user,
In [26]:
tweets.loc[tweets['user.id'] == 557422508]['text']
Out[26]:
id
593891099548094465 VIDEO: Sturgeon on post-election deals http://...
593891101766918144 SNP leader faces audience questions http://t.c...
Name: text, dtype: object
For listing the tweets by user_id, you would simply do something like the following (this is not in the original notebook),
In [9]:
tweets.set_index('user.id')[0:4]
Out[9]:
created_at favorite_count in_reply_to_status_id in_reply_to_user_id retweet_count retweeted text truncated
user.id
107794703 Thu Apr 30 21:34:06 +0000 2015 0 NaN NaN 0 False RT #KirkKus: Indirect cost of the UK being in ... False
557422508 Thu Apr 30 21:34:06 +0000 2015 0 NaN NaN 0 False VIDEO: Sturgeon on post-election deals http://... False
3006692193 Thu Apr 30 21:34:06 +0000 2015 0 NaN NaN 0 False RT #LabourEoin: The economy was growing 3 time... False
455154030 Thu Apr 30 21:34:06 +0000 2015 0 NaN NaN 0 False RT #GregLauder: the UKIP east lothian candidat... False
Hope it helps.
I wanted to parse a text file that contains unstructured text. I need to get the address, date of birth, name, sex, and ID.
. 55 MORILLO ZONE VIII,
BARANGAY ZONE VIII
(POB.), LUISIANA, LAGROS
F
01/16/1952
ALOMO, TERESITA CABALLES
3412-00000-A1652TCA2
12
. 22 FABRICANTE ST. ZONE
VIII LUISIANA LAGROS,
BARANGAY ZONE VIII
(POB.), LUISIANA, LAGROS
M
10/14/1967
AMURAO, CALIXTO MANALO13
In the example above, the first 3 lines is the address, the line with just an "F" is the sex, the DOB would be the line after "F", name after the DOB, the ID after the name, and the no. 12 under the ID is the index/record no.
However, the format is not consistent. In the second group, the address is 4 lines instead of 3 and the index/record no. is appended after the name (if the person doesn't have an ID field).
I wanted to rewrite the text into the following format:
name, ID, address, sex, DOB
Here is a first stab at a pyparsing solution (easy-to-copy code at the pyparsing pastebin). Walk through the separate parts, according to the interleaved comments.
data = """\
. 55 MORILLO ZONE VIII,
BARANGAY ZONE VIII
(POB.), LUISIANA, LAGROS
F
01/16/1952
ALOMO, TERESITA CABALLES
3412-00000-A1652TCA2
12
. 22 FABRICANTE ST. ZONE
VIII LUISIANA LAGROS,
BARANGAY ZONE VIII
(POB.), LUISIANA, LAGROS
M
10/14/1967
AMURAO, CALIXTO MANALO13
"""
from pyparsing import LineEnd, oneOf, Word, nums, Combine, restOfLine, \
alphanums, Suppress, empty, originalTextFor, OneOrMore, alphas, \
Group, ZeroOrMore
NL = LineEnd().suppress()
gender = oneOf("M F")
integer = Word(nums)
date = Combine(integer + '/' + integer + '/' + integer)
# define the simple line definitions
gender_line = gender("sex") + NL
dob_line = date("DOB") + NL
name_line = restOfLine("name") + NL
id_line = Word(alphanums+"-")("ID") + NL
recnum_line = integer("recnum") + NL
# define forms of address lines
first_addr_line = Suppress('.') + empty + restOfLine + NL
# a subsequent address line is any line that is not a gender definition
subsq_addr_line = ~(gender_line) + restOfLine + NL
# a line with a name and a recnum combined, if there is no ID
name_recnum_line = originalTextFor(OneOrMore(Word(alphas+',')))("name") + \
integer("recnum") + NL
# defining the form of an overall record, either with or without an ID
record = Group((first_addr_line + ZeroOrMore(subsq_addr_line))("address") +
gender_line +
dob_line +
((name_line +
id_line +
recnum_line) |
name_recnum_line))
# parse data
records = OneOrMore(record).parseString(data)
# output the desired results (note that address is actually a list of lines)
for rec in records:
if rec.ID:
print "%(name)s, %(ID)s, %(address)s, %(sex)s, %(DOB)s" % rec
else:
print "%(name)s, , %(address)s, %(sex)s, %(DOB)s" % rec
print
# how to access the individual fields of the parsed record
for rec in records:
print rec.dump()
print rec.name, 'is', rec.sex
print
Prints:
ALOMO, TERESITA CABALLES, 3412-00000-A1652TCA2, ['55 MORILLO ZONE VIII,', 'BARANGAY ZONE VIII', '(POB.), LUISIANA, LAGROS'], F, 01/16/1952
AMURAO, CALIXTO MANALO, , ['22 FABRICANTE ST. ZONE', 'VIII LUISIANA LAGROS,', 'BARANGAY ZONE VIII', '(POB.), LUISIANA, LAGROS'], M, 10/14/1967
['55 MORILLO ZONE VIII,', 'BARANGAY ZONE VIII', '(POB.), LUISIANA, LAGROS', 'F', '01/16/1952', 'ALOMO, TERESITA CABALLES', '3412-00000-A1652TCA2', '12']
- DOB: 01/16/1952
- ID: 3412-00000-A1652TCA2
- address: ['55 MORILLO ZONE VIII,', 'BARANGAY ZONE VIII', '(POB.), LUISIANA, LAGROS']
- name: ALOMO, TERESITA CABALLES
- recnum: 12
- sex: F
ALOMO, TERESITA CABALLES is F
['22 FABRICANTE ST. ZONE', 'VIII LUISIANA LAGROS,', 'BARANGAY ZONE VIII', '(POB.), LUISIANA, LAGROS', 'M', '10/14/1967', 'AMURAO, CALIXTO MANALO', '13']
- DOB: 10/14/1967
- address: ['22 FABRICANTE ST. ZONE', 'VIII LUISIANA LAGROS,', 'BARANGAY ZONE VIII', '(POB.), LUISIANA, LAGROS']
- name: AMURAO, CALIXTO MANALO
- recnum: 13
- sex: M
AMURAO, CALIXTO MANALO is M
you have to exploit whatever regularity and structure the text does have.
I suggest you read one line at a time and match it to a regular expression to determine its type, fill in the appropriate field in a person object. writing out that object and starting a new one whenever you get a field that you already have filled in.
It may be overkill, but the leading edge machine learning algorithms for this type of problem are based on conditional random fields. For example, Accurate Information Extraction from Research Papers
using Conditional Random Fields.
There is software out there that makes training these models relatively easy. See Mallet or CRF++.
You can probably do this with regular expressions without too much difficulty. If you have never used them before, check out the python documentation, then fire up redemo.py (on my computer, it's in c:\python26\Tools\scripts).
The first task is to split the flat file into a list of entities (one chunk of text per record). From the snippet of text you gave, you could split the file with a pattern matching the beginning of a line, where the first character is a dot:
import re
re_entity_splitter = re.compile(r'^\.')
entities = re_entity_splitter.split(open(textfile).read())
Note that the dot must be escaped (it's a wildcard character by default). Note also the r before the pattern. The r denotes 'raw string' format, which excuses you from having to escape the escape characters, resulting in so-called 'backslash plague.'
Once you have the file split into individual people, picking out the gender and birthdate is a snap. Use these:
re_gender = re.compile(r'^[MF]')
re_birth_Date = re.compile(r'\d\d/\d\d/\d\d')
And away you go. You can paste the flat file into re demo GUI and experiment with creating patterns to match what you need. You'll have it parsed in no time. Once you get good at this, you can use symbolic group names (see docs) to pick out individual elements quickly and cleanly.
Here's a quick hack job.
f = open('data.txt')
def process(file):
address = ""
for line in file:
if line == '': raise StopIteration
line = line.rstrip() # to ignore \n
if line in ('M','F'):
sex = line
break
else:
address += line
DOB = file.readline().rstrip() # to ignore \n
name = file.readline().rstrip()
if name[-1].isdigit():
name = re.match(r'^([^\d]+)\d+', name).group(1)
ID = None
else:
ID = file.readline().rstrip()
file.readline() # ignore the record #
print (name, ID, address, sex, DOB)
while True:
process(f)