I have a text file that looks like this:
Id Number: 12345678
Location: 1234561791234567090-8.9
Street: 999 Street AVE
Buyer: john doe
Id Number: 12345688
Location: 3582561791254567090-8.9
Street: 123 Street AVE
Buyer: Jane doe # buyer % LLC
Id Number: 12345689
Location: 8542561791254567090-8.9
Street: 854 Street AVE
Buyer: Jake and Bob: Owner%LLC: Inc
I'd like the file to look like this:
Id Number
Location
Street
Buyer
12345678
1234561791234567090-8.9
999 Street AVE
john doe
12345688
3582561791254567090-8.9
123 Street AVE
Jane doe # buyer % LLC
12345689
8542561791254567090-8.9
854 Street AVE
Jake and Bob: Owner%LLC: Inc
I have tried the following:
# 1 Read text file and ignore bad lines (lines with extra colons thus reading as extra fields).
tr = pd.read_csv('C:\\File Path\\test.txt', sep=':', header=None, error_bad_lines=False)
# 2 Convert into a dataframe/pivot table.
ndf = pd.DataFrame(tr.pivot(index=None, columns=0, values=1))
# 3 Clean up the pivot table to remove NaNs and reset the index (line by line).
nf2 = ndf.apply(lambda x: x.dropna().reset_index(drop=True))
Here is where got the last line (#3): https://stackoverflow.com/a/62481057/10448224
When I do the above and export to CSV the headers are arranged like the following:
(index)
Street
Buyer
Id Number
Location
The data is filled in nicely but at some point the Buyer field becomes inaccurate but the rest of the fields are accurate through the entire DF.
My guesses:
When I run #1 part of my script I get the following errors 507 times:
b'Skipping line 500: expected 2 fields, saw 3\nSkipping line 728: expected 2 fields, saw 3\
At the tail end of the new DF I am missing exactly 507 entries for the Byer field. So I think when I drop my bad lines, the field is pushing my data up.
Pain Points:
The Buyer field will sometimes have extra colons and other odd characters. So when I try to use a colon as a delimiter I run into problems.
I am new to Python and I am very new to using functions. I primarily use Pandas to manipulate data at a somewhat basic level. So in the words of the great Michael Scott: "Explain it to me like I'm five." Many many thanks to anyone willing to help.
Here's what I meant by reading in and using split. Very similar to other answers. Untested and I don't recall if inputline include eol, so I stripped it too.
with open('myfile.txt') as f:
data = [] # holds database
record = {} # holds built up record
for inputline in f:
key,value = inputline.strip().split(':',1)
if key == "Id Number": # new record starting
if len(record):
data.append(record) # write previous record
record = {}
record.update({key:value})
if len(record):
data.append(record) # out final record
df = pd.DataFrame(data)
This is a minimal example that demonstrates the basics:
cat split_test.txt
Id Number: 12345678
Location: 1234561791234567090-8.9
Street: 999 Street AVE
Buyer: john doe
Id Number: 12345688
Location: 3582561791254567090-8.9
Street: 123 Street AVE
Buyer: Jane doe # buyer % LLC
Id Number: 12345689
Location: 8542561791254567090-8.9
Street: 854 Street AVE
Buyer: Jake and Bob: Owner%LLC: Inc
import csv
with open("split_test.txt", "r") as f:
id_val = "Id Number"
list_var = []
for line in f:
split_line = line.strip().split(':')
print(split_line)
if split_line[0] == id_val:
d = {}
d[split_line[0]] = split_line[1]
list_var.append(d)
else:
d.update({split_line[0]: split_line[1]})
list_var
[{'Id Number': ' 12345689',
'Location': ' 8542561791254567090-8.9',
'Street': ' 854 Street AVE',
'Buyer': ' Jake and Bob'},
{'Id Number': ' 12345678',
'Location': ' 1234561791234567090-8.9',
'Street': ' 999 Street AVE',
'Buyer': ' john doe'},
{'Id Number': ' 12345688',
'Location': ' 3582561791254567090-8.9',
'Street': ' 123 Street AVE',
'Buyer': ' Jane doe # buyer % LLC'}]
with open("split_ex.csv", "w") as csv_file:
field_names = list_var[0].keys()
csv_writer = csv.DictWriter(csv_file, fieldnames=field_names)
csv_writer.writeheader()
for row in list_var:
csv_writer.writerow(row)
I would try reading the file line by line, splitting the key-value pairs into a list of dicts to look something like:
data = [
{
"Id Number": 12345678,
"Location": 1234561791234567090-8.9,
...
},
{
"Id Number": ...
}
]
# easy to create the dataframe from here
your_df = pd.DataFrame(data)
I have sought different articles here about searching data from a list, but nothing seems to be working right or is appropriate in what I am supposed to implement.
I have this pre-created module with over 500 list (they are strings, yes, but is considered as list when called into function; see code below) of names, city, email, etc. The following are just a chunk of it.
empRecords="""Jovita,Oles,8 S Haven St,Daytona Beach,Volusia,FL,6/14/1965,32114,386-248-4118,386-208-6976,joles#gmail.com,http://www.paganophilipgesq.com,;
Alesia,Hixenbaugh,9 Front St,Washington,District of Columbia,DC,3/3/2000,20001,202-646-7516,202-276-6826,alesia_hixenbaugh#hixenbaugh.org,http://www.kwikprint.com,;
Lai,Harabedian,1933 Packer Ave #2,Novato,Marin,CA,1/5/2000,94945,415-423-3294,415-926-6089,lai#gmail.com,http://www.buergimaddenscale.com,;
Brittni,Gillaspie,67 Rv Cent,Boise,Ada,ID,11/28/1974,83709,208-709-1235,208-206-9848,bgillaspie#gillaspie.com,http://www.innerlabel.com,;
Raylene,Kampa,2 Sw Nyberg Rd,Elkhart,Elkhart,IN,12/19/2001,46514,574-499-1454,574-330-1884,rkampa#kampa.org,http://www.hermarinc.com,;
Flo,Bookamer,89992 E 15th St,Alliance,Box Butte,NE,12/19/1957,69301,308-726-2182,308-250-6987,flo.bookamer#cox.net,http://www.simontonhoweschneiderpc.com,;
Jani,Biddy,61556 W 20th Ave,Seattle,King,WA,8/7/1966,98104,206-711-6498,206-395-6284,jbiddy#yahoo.com,http://www.warehouseofficepaperprod.com,;
Chauncey,Motley,63 E Aurora Dr,Orlando,Orange,FL,3/1/2000,32804,407-413-4842,407-557-8857,chauncey_motley#aol.com,http://www.affiliatedwithtravelodge.com
"""
a = empRecords.strip().split(";")
And I have the following code for searching:
import empData as x
def seecity():
empCitylist = list()
for ct in x.a:
empCt = ct.strip().split(",")
empCitylist.append(empCt)
t = sorted(empCitylist, key=lambda x: x[3])
for c in t:
city = (c[3])
print(city)
live_city = input("Enter city: ")
for cy in city:
if live_city in cy:
print(c[1])
# print("Name: "+ c[1] + ",", c[0], "| Current City: " + c[3])
Forgive my idiotic approach as I am new to Python. However, what I am trying to do is user will input the city, then the results should display the employee's last name, first name who are living in that city (I dunno if I made sense lol)
By the way, the code I used above doesn't return any answers. It just loops to the input.
Thank you for helping. Lovelots. <3
PS: the format of the empData is: first name, last name, address, city, country, birthday, zip, phone, and email
You can use the csv module to read easily a file with comma separated values
import csv
with open('test.csv', newline='') as csvfile:
records = list(csv.reader(csvfile))
def search(data, elem, index):
out = list()
for row in data:
if row[index] == elem:
out.append(row)
return out
#test
print(search(records, 'Orlando', 3))
Based on your original code, you can do it like this:
# Make list of list records, sorted by city
t = sorted((ct.strip().split(",") for ct in x.a), key=lambda x: x[3])
# List cities
print("Cities in DB:")
for c in t:
city = (c[3])
print("-", city)
# Define search function
def seecity():
live_city = input("Enter city: ")
for c in t:
if live_city == c[3]:
print("Name: "+ c[1] + ",", c[0], "| Current City: " + c[3])
seecity()
Then, after you understand what's going on, do as #Hoxha Alban suggested, and use the csv module.
The beauty of python lies in list comprehension.
empRecords="""Jovita,Oles,8 S Haven St,Daytona Beach,Volusia,FL,6/14/1965,32114,386-248-4118,386-208-6976,joles#gmail.com,http://www.paganophilipgesq.com,;
Alesia,Hixenbaugh,9 Front St,Washington,District of Columbia,DC,3/3/2000,20001,202-646-7516,202-276-6826,alesia_hixenbaugh#hixenbaugh.org,http://www.kwikprint.com,;
Lai,Harabedian,1933 Packer Ave #2,Novato,Marin,CA,1/5/2000,94945,415-423-3294,415-926-6089,lai#gmail.com,http://www.buergimaddenscale.com,;
Brittni,Gillaspie,67 Rv Cent,Boise,Ada,ID,11/28/1974,83709,208-709-1235,208-206-9848,bgillaspie#gillaspie.com,http://www.innerlabel.com,;
Raylene,Kampa,2 Sw Nyberg Rd,Elkhart,Elkhart,IN,12/19/2001,46514,574-499-1454,574-330-1884,rkampa#kampa.org,http://www.hermarinc.com,;
Flo,Bookamer,89992 E 15th St,Alliance,Box Butte,NE,12/19/1957,69301,308-726-2182,308-250-6987,flo.bookamer#cox.net,http://www.simontonhoweschneiderpc.com,;
Jani,Biddy,61556 W 20th Ave,Seattle,King,WA,8/7/1966,98104,206-711-6498,206-395-6284,jbiddy#yahoo.com,http://www.warehouseofficepaperprod.com,;
Chauncey,Motley,63 E Aurora Dr,Orlando,Orange,FL,3/1/2000,32804,407-413-4842,407-557-8857,chauncey_motley#aol.com,http://www.affiliatedwithtravelodge.com
"""
rows = empRecords.strip().split(";")
data = [ r.strip().split(",") for r in rows ]
then you can use any condition to filter the list, like
print ( [ "Name: " + emp[1] + "," + emp[0] + "| Current City: " + emp[3] for emp in data if emp[3] == "Washington" ] )
['Name: Hixenbaugh,Alesia| Current City: Washington']
Here I have a text file. I want to read Adress, Beneficiary, Beneficiary Bank, Acc Nbr, Total US$, Date which is at the top, RUT, BOX. I tried writing some code by myself but I am not able to correctly get the required information and moreover if the length of character changes I will not get correct output. How should I do this such that I will get every required information in a particular string.
The main problem will arise when my slicings will go wrong. For eg: I am using line[31:] for Acc Nbr. But if the address change then my slicing will also go wrong
My Text.txt
2014-11-09 BOX 1531 20140908123456 RUT 21 654321 0123
Girry S.A. CONTADO
G 5 Y Serie A
NO 098765
11 al Rayo 321 - Oqwerty 108 Monteaudio - Gruguay
Pharm Cosco, Inc - Britania PO Box 43215
Dirección Hot Springs AR 71903 - Estados Unidos
Oescripción Importe
US$
DO 7640183 - 50% of the Production Degree 246,123
Beneficiary Bank: Bankue Heritage (Gruguay) S.A Account Nbr: 1234563 Swift: MANIUYMM
Adress: Tencon 108 Monteaudio, Gruguay.
Beneficiary: Girry SA Acc Nbr: 1234567
Servicios prestados en el exterior, exentos de IVA o IRAE
Subtotal US$ 102,500
Iva US$ ---------------
Total US$ 102,500
I.V.A AL DIA Fecha de Vencimiento
IMPRENTA IRIS LTDA. - RUT 210161234015 - 0/40987 17/11/2015
CONSTANCIA N9 1234559842 -04/2013
CONTADO A 000.001/ A 000.050 x 2 VIAS
QWERTYAS ZXCVBIZADA
R. U.T. Bamprador Asdfumldor Final
Fecha 12/12/2014
1º ORIGINAL CLLLTE (Blanco) 2º CASIA AQWERVO (Rosasd)
My Code:
txt = 'Text.txt'
lines = [line.rstrip('\n') for line in open(txt)]
for line in lines:
if 'BOX' in line:
Date = line.split("BOX")[0]
BOX = line.split('BOX ', 1)[-1].split("RUT")[0]
RUT = line.split('RUT ',1)[-1]
print 'Date : ' + Date
print 'BOX : ' + BOX
print 'RUT : ' + RUT
if 'Adress' in line:
Adress = line[8:]
print 'Adress : ' + Adress
if 'NO ' in line:
Invoice_No = line.split('NO ',1)[-1]
print 'Invoice_No : ' + Invoice_No
if 'Swift:' in line:
Swift = line.split('Swift: ',1)[-1]
print 'Swift : ' + Swift
if 'Fecha' in line and '/' in line:
Invoice_Date = line.split('Fecha ',1)[-1]
print 'Invoice_Date : ' + Invoice_Date
if 'Beneficiary Bank' in line:
Beneficiary_Bank = line[18:]
Ben_Acc_Nbr = line.split('Nbr: ', 1)[-1]
print 'Beneficiary_Bank : ' + Beneficiary_Bank.split("Acc")[0]
print 'Ben_Acc_Nbr : ' + Ben_Acc_Nbr.split("Swift")[0]
if 'Beneficiary' in line and 'Beneficiary Bank' not in line:
Beneficiary = line[13:]
print 'Beneficiary : ' + Beneficiary.split("Acc")[0]
if 'Acc Nbr' in line:
Acc_Nbr = line.split('Nbr: ', 1)[-1]
print 'Acc_Nbr : ' + Acc_Nbr
if 'Total US$' in line:
Total_US = line.split('US$ ', 1)[-1]
print 'Total_US : ' + Total_US
Output:
Date : 2014-11-09
BOX : 1531 20140908123456
RUT : 21 654321 0123
Invoice_No : 098765
Swift : MANIUYMM
Beneficiary_Bank : Bankue Heritage (Gruguay) S.A
Ben_Acc_Nbr : 1234563
Adress : Tencon 108 Monteaudio, Gruguay.
Beneficiary : Girry SA
Acc_Nbr : 1234567
Total_US : 102,500
Invoice_Date : 12/12/2014
Some Code Changes
I have made some changes but still I am not convinced as I need to provide spaces also in split.
I would recommend you to use regular expressions to extract information you need. It helps to avoid the calculation of the numbers of offset characters.
import re
with open('C:\Quad.txt') as f:
for line in f:
match = re.search(r"Acc Nbr: (.*?)", line)
if match is not None:
Acc_Nbr = match.group(1)
print Acc_Nbr
# etc...
you can search to obtain index of it. for example:
if 'Acc Nbr' in line:
Acc_Nbr = line[line.find("Acc Nbr") + 10:]
print Acc_Nbr
note that find gives you index of first char of item you searched.
I have a CSV file with each line containing information pertaining to a particular tweet (i.e. each line contains Lat, Long, User_ID, tweet and so on). I need to read the file and organize the tweets by the User_ID. I am trying to end up with a given User_ID attached to all of the tweets with that specific ID.
Here is what I want:
user_id: 'lat', 'long', 'tweet'
: 'lat', 'long', 'tweet'
user_id2: 'lat', 'long', 'tweet'
: 'lat', 'long', 'tweet'
: 'lat', 'long', 'tweet'
and so on...
This is a snip of my code that reads in the CSV file and creates a list:
UID = []
myID = []
ID = []
f = None
with open(csv_in,'rU') as f:
myreader = csv.reader(f, delimiter=',')
for row in myreader:
# Assign columns in csv to variables.
latitude = row[0]
longitude = row[1]
user_id = row[2]
user_name = row[3]
date = row[4]
time = row[5]
tweet = row[6]
flag = row[7]
compound = row[8]
Vote = row[9]
# Read variables into separate lists.
UID.append(user_id + ', ' + latitude + ', ' + longitude + ', ' + user_name + ', ' + date + ', ' + time + ', ' + tweet + ', ' + flag + ', ' + compound)
myID = ', '.join(UID)
ID = myID.split(', ')
I'd suggest you use pandas for this. It will allow you not only to list your tweets by user_id, as in your question, but also to do many other manipulations quite easily.
As an example, take a look at this python notebook from NLTK. At the end of it, you see an operation very closed to yours, reading a csv file containing tweets,
In [25]:
import pandas as pd
tweets = pd.read_csv('tweets.20150430-223406.tweet.csv', index_col=2, header=0, encoding="utf8")
You can also find a simple operation: looking for the tweets of a certain user,
In [26]:
tweets.loc[tweets['user.id'] == 557422508]['text']
Out[26]:
id
593891099548094465 VIDEO: Sturgeon on post-election deals http://...
593891101766918144 SNP leader faces audience questions http://t.c...
Name: text, dtype: object
For listing the tweets by user_id, you would simply do something like the following (this is not in the original notebook),
In [9]:
tweets.set_index('user.id')[0:4]
Out[9]:
created_at favorite_count in_reply_to_status_id in_reply_to_user_id retweet_count retweeted text truncated
user.id
107794703 Thu Apr 30 21:34:06 +0000 2015 0 NaN NaN 0 False RT #KirkKus: Indirect cost of the UK being in ... False
557422508 Thu Apr 30 21:34:06 +0000 2015 0 NaN NaN 0 False VIDEO: Sturgeon on post-election deals http://... False
3006692193 Thu Apr 30 21:34:06 +0000 2015 0 NaN NaN 0 False RT #LabourEoin: The economy was growing 3 time... False
455154030 Thu Apr 30 21:34:06 +0000 2015 0 NaN NaN 0 False RT #GregLauder: the UKIP east lothian candidat... False
Hope it helps.