Python Point density plots in polar stereographic projection - python

I have a point cloud of magnetization directions with azimut (declination between 0° and 360°) and inclination between 0° and 90°. I display these points in a polar azimuthal equidistant projection (using matplotlib basemap). That means 90° inclination will point directly in the center of the plot and the declination runs clockwise.
My problem is that I want to also plot isolines around these point clouds, which should represent where the highest density of point/directions is located. What is the easiest way to do this? Nice would be to mark the isoline which encircles 50% is my data. If Iam not mistaken - this would be the median.
So far I've fiddled around with gaussian_kde and the outlier detection of sklearn (1 and 2), but the results are not as expected.
Any ideas?
Edit #1:
First gaussian_kde
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from mpl_toolkits.basemap import Basemap
m = Basemap(projection='spaeqd',boundinglat=0,lon_0=180,resolution='l',round=True)
m.drawparallels(np.arange(-80.,1.,10.),labels=[False,True,True,False])
m.drawmeridians(np.arange(-180.,181.,30.),labels=[True,False,False,True])
#data
x, y = m(m1,-m2) #m2 is negative because I to plot in the southern hemisphere!
#set up the grid for evaluation of the KDE
yi = np.arange(0,360.1,1)
xi = np.arange(-90,1,1)
xx,yy = np.meshgrid(xi,yi)
X, Y = m(xx,yy) # to have it in my basemap projection
#setup the gaussian kde and evaluate it
#pretty much similiar to the scipy.stats docs
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([x, y])
kernel = stats.gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)
#plot orginal points and probaility density function
ax = plt.gca()
ax.scatter(x,y,c = 'Crimson')
TOT = ax.contour(X,Y,Z,cmap=plt.cm.Reds)
plt.show()
Then sklearn:
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from mpl_toolkits.basemap import Basemap
from sklearn import svm
from sklearn.covariance import EllipticEnvelope
m = Basemap(projection='spaeqd',boundinglat=0,lon_0=180,resolution='l',round=True)
m.drawparallels(np.arange(-80.,1.,10.),labels=[False,True,True,False])
m.drawmeridians(np.arange(-180.,181.,30.),labels=[True,False,False,True])
#data
x, y = m(m1,-m2) #m2 is negative because I to plot in the southern hemisphere!
#Similar to examples in sklearn docs
outliers_fraction = 0.5
oneclass_svm = svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,\
kernel="rbf", gamma=0.1,verbose=True)
#seup grid
yi = np.arange(0,360.1,1)
xi = np.arange(-90,1,1)
R,T = np.meshgrid(xi,yi)
xx, yy = m(T,R)
x, y = m(m1,-m2)
#standardize data as suggested by docs
x_std = (x-x.mean())/x.std()
y_std = (y-y.mean())/y.std()
values = np.vstack([x_std, y_std])
#fit data and calculate threshold - this should mark my median - according to value of outliers_fraction
oneclass_svm.fit(values.T)
y_pred = oneclass_svm.decision_function(values.T).ravel()
threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction)
y_pred = y_pred > threshold
#Target vector for evaluation
TV = np.c_[xx.ravel(), yy.ravel()]
TV = (TV-TV.mean(axis=0))/TV.std(axis=0) #must be standardized as well
# evaluation - This is now shifted in the plot ad does not fit my point cloud anymore - because of the standadrization
Z = oneclass_svm.decision_function(TV)
Z = Z.reshape(xx.shape)
#plotting - very similar to the example in the docs
ax = plt.gca()
ax.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), \
cmap=plt.cm.Blues_r)
ax.contour(xx, yy, Z, levels=[threshold],
linewidths=2, colors='red')
ax.contourf(xx, yy, Z, levels=[threshold, Z.max()],
colors='orange')
ax.scatter(x, y,s=30, marker='s',c = 'RoyalBlue',label = 'Mr')
plt.show()
The EllipticEvelope works, but it is not that want I want.

Ok, I think I might found a solution. But it should not work in every case. It should fail in my opinion when the data is multimodal distributed.
Nevertheless, here is my though process:
So the Probalibity Density Function (PDF) is essentially the same as a continuous histogram. So I used np.percentile to calculate the upper and lower 25% percentile of both vectors. The I've searched for the value of the PDF at these perctiles and this should be the Isoline that i want.
Of course this should also work in the polar stereographic (or any other) projection.
Here is a litte example code of two gamma distributed data sets in a crossplot:
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.interpolate import LinearNDInterpolator, RegularGridInterpolator
#generate some data
x = np.random.gamma(10,0.8,1e4)
y = np.random.gamma(4,0.3,1e4)
#set up the data and grid for the 2D PDF
values = np.vstack([x,y])
pdf_x = np.linspace(x.min(),x.max(),1e2)
pdf_y = np.linspace(y.min(),y.max(),1e2)
X,Y = np.meshgrid(pdf_x,pdf_y)
kernel = stats.gaussian_kde(values)
#evaluate the PDF at every grid location
positions = np.vstack([X.ravel(), Y.ravel()])
Z = np.reshape(kernel(positions).T, X.shape)
#upper and lower quartiles of x and y data
xql = np.percentile(x,25)
xqu = np.percentile(x,75)
yql = np.percentile(y,25)
yqu = np.percentile(y,75)
#set up the interpolator - I could also use RegularGridInterpolator - should be faster
Interp = LinearNDInterpolator((X.flatten(),Y.flatten()),Z.flatten())
#1D example to illustrate what I mean
plt.figure()
kernel2 = stats.gaussian_kde(x)
plt.hist(x,30,normed=True)
plt.plot(pdf_x,kernel2(pdf_x),'r--',linewidth=2)
#plot vertical lines at the upper and lower quartiles
plt.vlines(np.percentile(x,25),0,0.2,color='red')
plt.vlines(np.percentile(x,75),0,0.2,color='red')
#Scatterplot / Crossplot with PDF and 25 and 75% isolines
plt.figure()
plt.scatter(x,y)
#search for the isolines defining the upper and lower quartiles
#the lower quartiles isoline should encircle 75% of the data
levels = [Interp(xql,yql),Interp(xqu,yqu)]
plt.contour(X,Y,Z,levels=levels,colors='orange')
plt.show()
To finish up I will give a quick example of what it looks in a polar stereographic projection:
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.interpolate import LinearNDInterpolator
from mpl_toolkits.basemap import Basemap
#set up the coordinate projection
m = Basemap(projection='spaeqd',boundinglat=0,lon_0=180,\
resolution='l',round=True,suppress_ticks=True)
parallelGrid = np.arange(-80.,1.,10.)
meridianGrid = np.arange(-180.0,180.1,30)
m.drawparallels(parallelGrid,labels=[False,False,False,False])
m.drawmeridians(meridianGrid,labels=[False,False,False,False],labelstyle='+/-',fmt='%i')
#Found this on stackoverflow - labels it exactly how I want it
ax = plt.gca()
ax.text(0.5,1.025,'N',transform=ax.transAxes,\
horizontalalignment='center',verticalalignment='bottom',size=25)
for para in np.arange(30,360,30):
x= (1.1*0.5*np.sin(np.deg2rad(para)))+0.5
y= (1.1*0.5*np.cos(np.deg2rad(para)))+0.5
ax.text(x,y,u'%i\N{DEGREE SIGN}'%para,transform=ax.transAxes,\
horizontalalignment='center',verticalalignment='center')
#generate some data
x = np.random.randint(180,225,size=15)
y = np.random.randint(30,40,size=15)
#into projection
x,y = m(x,-y)
values = np.vstack([x,y])
pdf_x = np.arange(0,361,1)
pdf_y = np.arange(0,91,1)
#into projection
X,Y = np.meshgrid(pdf_x,pdf_y)
X,Y = m(X,-Y)
kernel = stats.gaussian_kde(values)
positions = np.vstack([X.ravel(), Y.ravel()])
Z = np.reshape(kernel(positions).T, X.shape)
xql = np.percentile(x,25)
xqu = np.percentile(x,75)
yql = np.percentile(y,25)
yqu = np.percentile(y,75)
Interp = LinearNDInterpolator((X.flatten(),Y.flatten()),Z.flatten())
ax = plt.gca()
ax.scatter(x,y)
levels = [Interp(xql,yql),Interp(xqu,yqu)]
ax.contour(X,Y,Z,levels=levels,colors='red')
plt.show()

Related

Translating radial data to a cartesian grid for surface plot

I have a list of data whose components correspond to the potential at some radial distance r on a 2D grid. The data corresponds to data points in polar coordinates and is symmetric in the theta component
import numpy as np
import matplotlib.pyplot as plt
r = np.linspace(1.0, 5.0, 99)
#Data looks like:
V = np.array([9.0,...,0.0])
x = np.linspace(-5.0,5.0,99)
y = np.linspace(-5.0,5.0,99)
xx,yy = np.meshgrid(x,y)
I would like to create a surface plot of the data in (x,y) space, however to use matplotlib you need a grid of data points corresponding to the potential at each (x,y) location. Given that I have a set of data measured in (r,theta) space, how can I create a surface plot?
You will need to tranform your data to cartesian coordinates first and create a value array of the same shape as the meshgrid by repeating the value V for each theta.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
r = np.linspace(1.0, 5.0, 99)
V = np.sqrt(np.sinc(r-0.5)**2) # your data here (same length as r)
theta = np.linspace(0,2*np.pi,50)
R, Theta = np.meshgrid(r,theta)
X = R * np.cos(Theta)
Y = R * np.sin(Theta)
Z = np.tile(V,(len(theta),1))
norm = plt.Normalize(vmin=Z.min(), vmax=Z.max())
ax.plot_surface(X,Y,Z, facecolors=plt.cm.RdYlGn(norm(Z)))
plt.show()

Python/Matplotlib: 2d random walk with kde joint density contour in a 3d plot

I'm struggling with creating a quite complex 3d figure in python, specifically using iPython notebook. I can partition the content of the graph into two sections:
The (x,y) plane: Here a two-dimensional random walk is bobbing around, let's call it G(). I would like to plot part of this trajectory on the (x,y) plane. Say, 10% of all the data points of G(). As G() bobs around, it visits some (x,y) pairs more frequently than others. I would like to estimate this density of G() using a kernel estimation approach and draw it as contour lines on the (x,y) plane.
The (z) plane: Here, I would like to draw a mesh or (transparent) surface plot of the information theoretical surprise of a bivariate normal. Surprise is simply -log(p(i)) or the negative (base 2) logarithm of outcome i. Given the bivariate normal, each (x,y) pair has some probability p(x,y) and the surprise of this is simply -log(p(x,y)).
Essentially these two graphs are independent. Assume the interval of the random walk G() is [xmin,xmax],[ymin,ymax] and of size N. The bivariate normal in the z-plane should be drawn from the same interval, such that for each (x,y) pair in the random walk, I can draw a (dashed) line from some subset of the random walk n < N to the bivariate normal. Assume that G(10) = (5,5) then I would like to draw a dashed line from (5,5) up the Z-axes, until it hits the bivariate normal.
So far, I've managed to plot G() in a 3-d space, and estimate the density f(X,Y) using scipy.stats.gaussian_kde. In another (2d) graph, I have the sort of contour lines I want. What I don't have, is the contour lines in the 3d-plot using the estimated KDE density. I also don't have the bivariate normal plot, or the projection of a few random points from the random walk, to the surface of the bivariate normal. I've added a hand drawn figure, which might ease intuition (ignore the label on the z-axis and the fact that there is no mesh.. difficult to draw!)
Any input, even just partial, such as how to draw the contour lines in the (x,y) plane of the 3d graph, or a mesh of a bivariate normal would be much appreciated.
Thanks!
import matplotlib as mpl
import matplotlib.pyplot as plt
import random
import numpy as np
import seaborn as sns
import scipy
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
def randomwalk():
mpl.rcParams['legend.fontsize'] = 10
xyz = []
cur = [0, 0]
for _ in range(400):
axis = random.randrange(0, 2)
cur[axis] += random.choice([-1, 1])
xyz.append(cur[:])
x, y = zip(*xyz)
data = np.vstack([x,y])
kde = scipy.stats.gaussian_kde(data)
density = kde(data)
fig1 = plt.figure()
ax = fig1.gca(projection='3d')
ax.plot(x, y, label='Random walk')
sns.kdeplot(data[0,:], data[1,:], 0)
ax.scatter(x[-1], y[-1], c='b', marker='o') # End point
ax.legend()
fig2 = plt.figure()
sns.kdeplot(data[0,:], data[1,:])
Calling randomwalk() initialises and plots this:
Edit #1:
Made some progress, actually the only thing I need is to restrict the height of the dashed vertical lines to the bivariate. Any ideas?
import matplotlib as mpl
import matplotlib.pyplot as plt
import random
import numpy as np
import seaborn as sns
import scipy
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.mlab import bivariate_normal
%matplotlib inline
# Data for random walk
def randomwalk():
mpl.rcParams['legend.fontsize'] = 10
xyz = []
cur = [0, 0]
for _ in range(40):
axis = random.randrange(0, 2)
cur[axis] += random.choice([-1, 1])
xyz.append(cur[:])
# Get density
x, y = zip(*xyz)
data = np.vstack([x,y])
kde = scipy.stats.gaussian_kde(data)
density = kde(data)
# Data for bivariate gaussian
a = np.linspace(-7.5, 7.5, 20)
b = a
X,Y = np.meshgrid(a, b)
Z = bivariate_normal(X, Y)
surprise_Z = -np.log(Z)
# Get random points from walker and plot up z-axis to the gaussian
M = data[:,np.random.choice(20,5)].T
# Plot figure
fig = plt.figure(figsize=(10, 7))
ax = fig.gca(projection='3d')
ax.plot(x, y, 'grey', label='Random walk') # Walker
ax.scatter(x[-1], y[-1], c='k', marker='o') # End point
ax.legend()
surf = ax.plot_surface(X, Y, surprise_Z, rstride=1, cstride=1,
cmap = plt.cm.gist_heat_r, alpha=0.1, linewidth=0.1)
#fig.colorbar(surf, shrink=0.5, aspect=7, cmap=plt.cm.gray_r)
for i in range(5):
ax.plot([M[i,0], M[i,0]],[M[i,1], M[i,1]], [0,10],'k--',alpha=0.8, linewidth=0.5)
ax.set_zlim(0, 50)
ax.set_xlim(-10, 10)
ax.set_ylim(-10, 10)
Final code,
import matplotlib as mpl
import matplotlib.pyplot as plt
import random
import numpy as np
import seaborn as sns
import scipy
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.mlab import bivariate_normal
%matplotlib inline
# Data for random walk
def randomwalk():
mpl.rcParams['legend.fontsize'] = 10
xyz = []
cur = [0, 0]
for _ in range(50):
axis = random.randrange(0, 2)
cur[axis] += random.choice([-1, 1])
xyz.append(cur[:])
# Get density
x, y = zip(*xyz)
data = np.vstack([x,y])
kde = scipy.stats.gaussian_kde(data)
density = kde(data)
# Data for bivariate gaussian
a = np.linspace(-7.5, 7.5, 100)
b = a
X,Y = np.meshgrid(a, b)
Z = bivariate_normal(X, Y)
surprise_Z = -np.log(Z)
# Get random points from walker and plot up z-axis to the gaussian
M = data[:,np.random.choice(50,10)].T
# Plot figure
fig = plt.figure(figsize=(10, 7))
ax = fig.gca(projection='3d')
ax.plot(x, y, 'grey', label='Random walk') # Walker
ax.legend()
surf = ax.plot_surface(X, Y, surprise_Z, rstride=1, cstride=1,
cmap = plt.cm.gist_heat_r, alpha=0.1, linewidth=0.1)
#fig.colorbar(surf, shrink=0.5, aspect=7, cmap=plt.cm.gray_r)
for i in range(10):
x = [M[i,0], M[i,0]]
y = [M[i,1], M[i,1]]
z = [0,-np.log(bivariate_normal(M[i,0],M[i,1]))]
ax.plot(x,y,z,'k--',alpha=0.8, linewidth=0.5)
ax.scatter(x, y, z, c='k', marker='o')

Python: How to revolve a surface around z axis and make a 3d plot?

I want to get 2d and 3d plots as shown below.
The equation of the curve is given.
How can we do so in python?
I know there may be duplicates but at the time of posting
I could not fine any useful posts.
My initial attempt is like this:
# Imports
import numpy as np
import matplotlib.pyplot as plt
# to plot the surface rho = b*cosh(z/b) with rho^2 = r^2 + b^2
z = np.arange(-3, 3, 0.01)
rho = np.cosh(z) # take constant b = 1
plt.plot(rho,z)
plt.show()
Some related links are following:
Rotate around z-axis only in plotly
The 3d-plot should look like this:
Ok so I think you are really asking to revolve a 2d curve around an axis to create a surface. I come from a CAD background so that is how i explain things.
and I am not the greatest at math so forgive any clunky terminology. Unfortunately you have to do the rest of the math to get all the points for the mesh.
Heres your code:
#import for 3d
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
change arange to linspace which captures the endpoint otherwise arange will be missing the 3.0 at the end of the array:
z = np.linspace(-3, 3, 600)
rho = np.cosh(z) # take constant b = 1
since rho is your radius at every z height we need to calculate x,y points around that radius. and before that we have to figure out at what positions on that radius to get x,y co-ordinates:
#steps around circle from 0 to 2*pi(360degrees)
#reshape at the end is to be able to use np.dot properly
revolve_steps = np.linspace(0, np.pi*2, 600).reshape(1,600)
the Trig way of getting points around a circle is:
x = r*cos(theta)
y = r*sin(theta)
for you r is your rho, and theta is revolve_steps
by using np.dot to do matrix multiplication you get a 2d array back where the rows of x's and y's will correspond to the z's
theta = revolve_steps
#convert rho to a column vector
rho_column = rho.reshape(600,1)
x = rho_column.dot(np.cos(theta))
y = rho_column.dot(np.sin(theta))
# expand z into a 2d array that matches dimensions of x and y arrays..
# i used np.meshgrid
zs, rs = np.meshgrid(z, rho)
#plotting
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
fig.tight_layout(pad = 0.0)
#transpose zs or you get a helix not a revolve.
# you could add rstride = int or cstride = int kwargs to control the mesh density
ax.plot_surface(x, y, zs.T, color = 'white', shade = False)
#view orientation
ax.elev = 30 #30 degrees for a typical isometric view
ax.azim = 30
#turn off the axes to closely mimic picture in original question
ax.set_axis_off()
plt.show()
#ps 600x600x600 pts takes a bit of time to render
I am not sure if it's been fixed in latest version of matplotlib but the setting the aspect ratio of 3d plots with:
ax.set_aspect('equal')
has not worked very well. you can find solutions at this stack overflow question
Only rotate the axis, in this case x
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d
np.seterr(divide='ignore', invalid='ignore')
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = np.linspace(-3, 3, 60)
rho = np.cosh(x)
v = np.linspace(0, 2*np.pi, 60)
X, V = np.meshgrid(x, v)
Y = np.cosh(X) * np.cos(V)
Z = np.cosh(X) * np.sin(V)
ax.set_xlabel('eje X')
ax.set_ylabel('eje Y')
ax.set_zlabel('eje Z')
ax.plot_surface(X, Y, Z, cmap='YlGnBu_r')
plt.plot(x, rho, 'or') #Muestra la curva que se va a rotar
plt.show()
The result:

scikit-learn: How to use the fitted probability model?

So I have used scikit-learn's Gaussian mixture models(http://scikit-learn.org/stable/modules/mixture.html) to fit my data, now I want to use the model, How can I do it? Specifically:
How can I plot the probability density distribution?
How can I calculate the mean square error of the fitting model?
Here is the code you may need:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from sklearn import mixture
import matplotlib as mpl
from matplotlib.patches import Ellipse
%matplotlib inline
n_samples = 300
# generate random sample, two components
np.random.seed(0)
shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 5])
sample= shifted_gaussian
# fit a Gaussian Mixture Model with two components
clf = mixture.GMM(n_components=2, covariance_type='full')
clf.fit(sample)
# plot sample scatter
plt.scatter(sample[:, 0], sample[:, 1])
# 1. Plot the probobility density distribution
# 2. Calculate the mean square error of the fitting model
UPDATE:
I can plot the distribution by:
x = np.linspace(-20.0, 30.0)
y = np.linspace(-20.0, 40.0)
X, Y = np.meshgrid(x, y)
XX = np.array([X.ravel(), Y.ravel()]).T
Z = -clf.score_samples(XX)[0]
Z = Z.reshape(X.shape)
CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0),
levels=np.logspace(0, 3, 10))
CB = plt.colorbar(CS, shrink=0.8, extend='both')
But isn't it quite strange? Is there better way do to it? Can I plot something like this?
I think the result is reasonable, if you adjust the xlim and ylim a little bit:
# plot sample scatter
plt.scatter(sample[:, 0], sample[:, 1], marker='+', alpha=0.5)
# 1. Plot the probobility density distribution
# 2. Calculate the mean square error of the fitting model
x = np.linspace(-20.0, 30.0, 100)
y = np.linspace(-20.0, 40.0, 100)
X, Y = np.meshgrid(x, y)
XX = np.array([X.ravel(), Y.ravel()]).T
Z = -clf.score_samples(XX)[0]
Z = Z.reshape(X.shape)
CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=10.0),
levels=np.logspace(0, 1, 10))
CB = plt.colorbar(CS, shrink=0.8, extend='both')
plt.xlim((10,30))
plt.ylim((-5, 15))

Scattered x,y,z via python's matplotlib.pyplot.contourf

Most pyplot examples out there use linear data, but what if data is scattered?
x = 3,7,9
y = 1,4,5
z = 20,3,7
better meshgrid for contourf
xi = np.linspace(min(x)-1, max(x)+1, 9)
yi = np.linspace(min(y)-1, max(y)+1, 9)
X, Y = np.meshgrid(xi, yi)
Now "z" data got to be interpolated onto the meshgrid.
numpy.interp does little help here, while both linear and nn interpolaton of
zi = matplotlib.mlab.griddata(x,y,z,xi,yi,interp="linear")
returns rather strange results
scipy.interpolate.griddata cubic from second answer below needs something else to return data rather than nils
With custom levels data expected be looking something like this
This is what happens:
Although contour requires grid data, we can caste scatter data to a grid and then using masked arrays mask out the blank regions. I simulate this in the code below, by creating a random array, then using this to mask a test dataset (shown at bottom). The bulk of the code is taken from this matplotlib demo page.
import matplotlib
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
matplotlib.rcParams['xtick.direction'] = 'out'
matplotlib.rcParams['ytick.direction'] = 'out'
delta = 0.025
x = np.arange(-3.0, 3.0, delta)
y = np.arange(-2.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Z = 10.0 * (Z2 - Z1)
from numpy.random import *
import numpy.ma as ma
J = random_sample(X.shape)
mask = J > 0.7
X = ma.masked_array(X, mask=mask)
Y = ma.masked_array(Y, mask=mask)
Z = ma.masked_array(Z, mask=mask)
plt.figure()
CS = plt.contour(X, Y, Z, 20)
plt.clabel(CS, inline=1, fontsize=10)
plt.title('Simplest default with labels')
plt.savefig('cat.png')
plt.show()
countourf will only work with a grid of data. If you're data is scattered, then you'll need to create an interpolated grid matching your data, like this: (note you'll need scipy to perform the interpolation)
import numpy as np
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
import numpy.ma as ma
from numpy.random import uniform, seed
# your data
x = [3,7,9]
y = [1,4,5]
z = [20,3,7]
# define grid.
xi = np.linspace(0,10,300)
yi = np.linspace(0,6,300)
# grid the data.
zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='cubic')
# contour the gridded data, plotting dots at the randomly spaced data points.
CS = plt.contour(xi,yi,zi,15,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,zi,15,cmap=plt.cm.jet)
plt.colorbar() # draw colorbar
# plot data points.
plt.scatter(x,y,marker='o',c='b',s=5)
plt.xlim(min(x),max(x))
plt.ylim(min(y),max(y))
plt.title('griddata test (%d points)' % len(x))
plt.show()
See here for the origin of that code.

Categories