Translating radial data to a cartesian grid for surface plot - python

I have a list of data whose components correspond to the potential at some radial distance r on a 2D grid. The data corresponds to data points in polar coordinates and is symmetric in the theta component
import numpy as np
import matplotlib.pyplot as plt
r = np.linspace(1.0, 5.0, 99)
#Data looks like:
V = np.array([9.0,...,0.0])
x = np.linspace(-5.0,5.0,99)
y = np.linspace(-5.0,5.0,99)
xx,yy = np.meshgrid(x,y)
I would like to create a surface plot of the data in (x,y) space, however to use matplotlib you need a grid of data points corresponding to the potential at each (x,y) location. Given that I have a set of data measured in (r,theta) space, how can I create a surface plot?

You will need to tranform your data to cartesian coordinates first and create a value array of the same shape as the meshgrid by repeating the value V for each theta.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
r = np.linspace(1.0, 5.0, 99)
V = np.sqrt(np.sinc(r-0.5)**2) # your data here (same length as r)
theta = np.linspace(0,2*np.pi,50)
R, Theta = np.meshgrid(r,theta)
X = R * np.cos(Theta)
Y = R * np.sin(Theta)
Z = np.tile(V,(len(theta),1))
norm = plt.Normalize(vmin=Z.min(), vmax=Z.max())
ax.plot_surface(X,Y,Z, facecolors=plt.cm.RdYlGn(norm(Z)))
plt.show()

Related

Radially 'sweep out' a 2D contour plot to create a 3D plot (Python, Matplotlib)

I have three 1D arrays, which represent radius, height, and an intensity measured at that point. I have plotted these to create a 2D contour map. A simple example of the way in which the data is stored is below:
import numpy as np
import matplotlib.pyplot as plt
x = [1,1,1,2,2,2,3,3,3]
y = [1,2,3,1,2,3,1,2,3]
intensity = [5,6,8,9,9,11,15,5,2]
plt.xlabel('Radius')
plt.ylabel('Height')
plt.tricontourf(x,y,intensity)
plt.colorbar(label='Intensity')
plt.show()
(I have had to use plt.tricontourf rather than plt.contour, since the z data is not 2D)
I am looking to create a 3D plot by 'sweeping' the 2D plot through 360 degrees, creating a disk which is azimuthally symmetric. The image below illustrates what I am trying to do...
...with the data interpolated smoothly through the 360 degrees.
There are a couple of similar questions, notably this one, but this does not use three sets of data to create the contours.
Technically you cannot rotate a 2D plot and get a 3D surface. You can only rotate a 2D curve and get a 3D surface. If this is the case, you could do it as:
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
fig = plt.figure(figsize = (8, 6))
ax = fig.add_subplot(projection='3d')
N = 100
r = np.linspace(0, 1, N)
z = np.sqrt(1 - r**2)
intensity = np.linspace(0, 1, N).reshape(1, -1)
theta = np.linspace(0, 2*np.pi-1e-3, N)
X = np.outer(np.cos(theta), r)
Y = np.outer(np.sin(theta), r)
Z = np.repeat(z.reshape(1, -1), N, axis = 0)
surf = ax.plot_surface(X, Y, Z, facecolors=cm.jet(np.repeat(intensity, N, axis = 0)))
ax.axes.set_zlim3d(-1, 1)
plt.show()
In the code I rotated a curve to create half a unit sphere and color it according to intensity:
to
If you insist on plotting all the points, I would suggest a 3d scatter plot, I did some linear interpolation to show more points than the original 9:
from scipy.interpolate import interp2d
x = [1,1,1,2,2,2,3,3,3]
y = [1,2,3,1,2,3,1,2,3]
intensity = [5,6,8,9,9,11,15,5,2]
# number of points to interpolate in 3d space
N = 36
# number of points to interpolate in 2d space
N_2d = 10
f = interp2d(x, y, intensity)
# sample along the radius
r = np.linspace(1,3,N_2d)
# sample along z
z = np.linspace(1,3,N_2d)
intensity = f(r, z)
r,z = np.meshgrid(r, z)
theta = np.linspace(0, 2*np.pi, N)
X = np.outer(np.cos(theta), r)
Y = np.outer(np.sin(theta), r)
Z = np.repeat(z.reshape(1, -1), N, axis = 0)
fig = plt.figure(figsize = (10, 6))
ax = fig.add_subplot(projection='3d')
ax.scatter3D(X, Y, Z, c=np.tile(intensity.T, N).T, alpha = 0.5)
plt.show()

With matplotlib for Python, how to plot a dot in the center of cells that were created with pcolor?

I am using matplotlib.pyplot.pcolor to plot a 2D grid like the following:
PL.pcolor(array, cmap = PL.cm.YlOrRd, vmin = 0, vmax = 3)
Where array is just a simple 2D array. That part works fine. But next I try:
PL.hold(True)
PL.scatter(x, y, 'blue')
PL.hold(False)
Where x and y are the coordinates where I want a given dot to be plotted. However, instead of getting plotted in the center of the cells of the grid that is plotted with pcolor, the dot gets to the corner of the cells (no matter which cell I choose).
You can use meshgrid to generate the mesh of points. If your sampling x and y are uniform, then just add the separation divided by two in each direction. i.e. if separation is 1, then add 0.5 and subtract one point:
import numpy as np
import matplotlib.pyplot as plt
r = np.arange(10)
p = np.arange(10)
R,P = np.meshgrid(r,p)
data = np.random.random((10,10))
plt.pcolor(R,P,data)
plt.scatter(R[:-1,:-1]+0.5,P[:-1,:-1]+0.5, color = 'blue')
This is in case you use tripcolor:
You can calculate the centroid of your points: triang.triangles gives you the three point indexes of each triangle, then you calculate the centroid using those three points. i.e. centroidX = (x1+x2+x3)/3.; centroidY = (y1+y2+y3)/3.;
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
x = np.random.random(10)
y = np.random.random(10)
z = np.random.random(10)
triang = tri.Triangulation(x, y)
plt.tripcolor(triang,z)
centroidX = [x[i].sum()/3. for i in triang.triangles]
centroidY = [y[i].sum()/3. for i in triang.triangles]
plt.scatter(centroidX,centroidY, color = 'blue')

Python: How to revolve a surface around z axis and make a 3d plot?

I want to get 2d and 3d plots as shown below.
The equation of the curve is given.
How can we do so in python?
I know there may be duplicates but at the time of posting
I could not fine any useful posts.
My initial attempt is like this:
# Imports
import numpy as np
import matplotlib.pyplot as plt
# to plot the surface rho = b*cosh(z/b) with rho^2 = r^2 + b^2
z = np.arange(-3, 3, 0.01)
rho = np.cosh(z) # take constant b = 1
plt.plot(rho,z)
plt.show()
Some related links are following:
Rotate around z-axis only in plotly
The 3d-plot should look like this:
Ok so I think you are really asking to revolve a 2d curve around an axis to create a surface. I come from a CAD background so that is how i explain things.
and I am not the greatest at math so forgive any clunky terminology. Unfortunately you have to do the rest of the math to get all the points for the mesh.
Heres your code:
#import for 3d
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
change arange to linspace which captures the endpoint otherwise arange will be missing the 3.0 at the end of the array:
z = np.linspace(-3, 3, 600)
rho = np.cosh(z) # take constant b = 1
since rho is your radius at every z height we need to calculate x,y points around that radius. and before that we have to figure out at what positions on that radius to get x,y co-ordinates:
#steps around circle from 0 to 2*pi(360degrees)
#reshape at the end is to be able to use np.dot properly
revolve_steps = np.linspace(0, np.pi*2, 600).reshape(1,600)
the Trig way of getting points around a circle is:
x = r*cos(theta)
y = r*sin(theta)
for you r is your rho, and theta is revolve_steps
by using np.dot to do matrix multiplication you get a 2d array back where the rows of x's and y's will correspond to the z's
theta = revolve_steps
#convert rho to a column vector
rho_column = rho.reshape(600,1)
x = rho_column.dot(np.cos(theta))
y = rho_column.dot(np.sin(theta))
# expand z into a 2d array that matches dimensions of x and y arrays..
# i used np.meshgrid
zs, rs = np.meshgrid(z, rho)
#plotting
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
fig.tight_layout(pad = 0.0)
#transpose zs or you get a helix not a revolve.
# you could add rstride = int or cstride = int kwargs to control the mesh density
ax.plot_surface(x, y, zs.T, color = 'white', shade = False)
#view orientation
ax.elev = 30 #30 degrees for a typical isometric view
ax.azim = 30
#turn off the axes to closely mimic picture in original question
ax.set_axis_off()
plt.show()
#ps 600x600x600 pts takes a bit of time to render
I am not sure if it's been fixed in latest version of matplotlib but the setting the aspect ratio of 3d plots with:
ax.set_aspect('equal')
has not worked very well. you can find solutions at this stack overflow question
Only rotate the axis, in this case x
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as axes3d
np.seterr(divide='ignore', invalid='ignore')
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = np.linspace(-3, 3, 60)
rho = np.cosh(x)
v = np.linspace(0, 2*np.pi, 60)
X, V = np.meshgrid(x, v)
Y = np.cosh(X) * np.cos(V)
Z = np.cosh(X) * np.sin(V)
ax.set_xlabel('eje X')
ax.set_ylabel('eje Y')
ax.set_zlabel('eje Z')
ax.plot_surface(X, Y, Z, cmap='YlGnBu_r')
plt.plot(x, rho, 'or') #Muestra la curva que se va a rotar
plt.show()
The result:

Python Point density plots in polar stereographic projection

I have a point cloud of magnetization directions with azimut (declination between 0° and 360°) and inclination between 0° and 90°. I display these points in a polar azimuthal equidistant projection (using matplotlib basemap). That means 90° inclination will point directly in the center of the plot and the declination runs clockwise.
My problem is that I want to also plot isolines around these point clouds, which should represent where the highest density of point/directions is located. What is the easiest way to do this? Nice would be to mark the isoline which encircles 50% is my data. If Iam not mistaken - this would be the median.
So far I've fiddled around with gaussian_kde and the outlier detection of sklearn (1 and 2), but the results are not as expected.
Any ideas?
Edit #1:
First gaussian_kde
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from mpl_toolkits.basemap import Basemap
m = Basemap(projection='spaeqd',boundinglat=0,lon_0=180,resolution='l',round=True)
m.drawparallels(np.arange(-80.,1.,10.),labels=[False,True,True,False])
m.drawmeridians(np.arange(-180.,181.,30.),labels=[True,False,False,True])
#data
x, y = m(m1,-m2) #m2 is negative because I to plot in the southern hemisphere!
#set up the grid for evaluation of the KDE
yi = np.arange(0,360.1,1)
xi = np.arange(-90,1,1)
xx,yy = np.meshgrid(xi,yi)
X, Y = m(xx,yy) # to have it in my basemap projection
#setup the gaussian kde and evaluate it
#pretty much similiar to the scipy.stats docs
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([x, y])
kernel = stats.gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)
#plot orginal points and probaility density function
ax = plt.gca()
ax.scatter(x,y,c = 'Crimson')
TOT = ax.contour(X,Y,Z,cmap=plt.cm.Reds)
plt.show()
Then sklearn:
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from mpl_toolkits.basemap import Basemap
from sklearn import svm
from sklearn.covariance import EllipticEnvelope
m = Basemap(projection='spaeqd',boundinglat=0,lon_0=180,resolution='l',round=True)
m.drawparallels(np.arange(-80.,1.,10.),labels=[False,True,True,False])
m.drawmeridians(np.arange(-180.,181.,30.),labels=[True,False,False,True])
#data
x, y = m(m1,-m2) #m2 is negative because I to plot in the southern hemisphere!
#Similar to examples in sklearn docs
outliers_fraction = 0.5
oneclass_svm = svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,\
kernel="rbf", gamma=0.1,verbose=True)
#seup grid
yi = np.arange(0,360.1,1)
xi = np.arange(-90,1,1)
R,T = np.meshgrid(xi,yi)
xx, yy = m(T,R)
x, y = m(m1,-m2)
#standardize data as suggested by docs
x_std = (x-x.mean())/x.std()
y_std = (y-y.mean())/y.std()
values = np.vstack([x_std, y_std])
#fit data and calculate threshold - this should mark my median - according to value of outliers_fraction
oneclass_svm.fit(values.T)
y_pred = oneclass_svm.decision_function(values.T).ravel()
threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction)
y_pred = y_pred > threshold
#Target vector for evaluation
TV = np.c_[xx.ravel(), yy.ravel()]
TV = (TV-TV.mean(axis=0))/TV.std(axis=0) #must be standardized as well
# evaluation - This is now shifted in the plot ad does not fit my point cloud anymore - because of the standadrization
Z = oneclass_svm.decision_function(TV)
Z = Z.reshape(xx.shape)
#plotting - very similar to the example in the docs
ax = plt.gca()
ax.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), \
cmap=plt.cm.Blues_r)
ax.contour(xx, yy, Z, levels=[threshold],
linewidths=2, colors='red')
ax.contourf(xx, yy, Z, levels=[threshold, Z.max()],
colors='orange')
ax.scatter(x, y,s=30, marker='s',c = 'RoyalBlue',label = 'Mr')
plt.show()
The EllipticEvelope works, but it is not that want I want.
Ok, I think I might found a solution. But it should not work in every case. It should fail in my opinion when the data is multimodal distributed.
Nevertheless, here is my though process:
So the Probalibity Density Function (PDF) is essentially the same as a continuous histogram. So I used np.percentile to calculate the upper and lower 25% percentile of both vectors. The I've searched for the value of the PDF at these perctiles and this should be the Isoline that i want.
Of course this should also work in the polar stereographic (or any other) projection.
Here is a litte example code of two gamma distributed data sets in a crossplot:
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.interpolate import LinearNDInterpolator, RegularGridInterpolator
#generate some data
x = np.random.gamma(10,0.8,1e4)
y = np.random.gamma(4,0.3,1e4)
#set up the data and grid for the 2D PDF
values = np.vstack([x,y])
pdf_x = np.linspace(x.min(),x.max(),1e2)
pdf_y = np.linspace(y.min(),y.max(),1e2)
X,Y = np.meshgrid(pdf_x,pdf_y)
kernel = stats.gaussian_kde(values)
#evaluate the PDF at every grid location
positions = np.vstack([X.ravel(), Y.ravel()])
Z = np.reshape(kernel(positions).T, X.shape)
#upper and lower quartiles of x and y data
xql = np.percentile(x,25)
xqu = np.percentile(x,75)
yql = np.percentile(y,25)
yqu = np.percentile(y,75)
#set up the interpolator - I could also use RegularGridInterpolator - should be faster
Interp = LinearNDInterpolator((X.flatten(),Y.flatten()),Z.flatten())
#1D example to illustrate what I mean
plt.figure()
kernel2 = stats.gaussian_kde(x)
plt.hist(x,30,normed=True)
plt.plot(pdf_x,kernel2(pdf_x),'r--',linewidth=2)
#plot vertical lines at the upper and lower quartiles
plt.vlines(np.percentile(x,25),0,0.2,color='red')
plt.vlines(np.percentile(x,75),0,0.2,color='red')
#Scatterplot / Crossplot with PDF and 25 and 75% isolines
plt.figure()
plt.scatter(x,y)
#search for the isolines defining the upper and lower quartiles
#the lower quartiles isoline should encircle 75% of the data
levels = [Interp(xql,yql),Interp(xqu,yqu)]
plt.contour(X,Y,Z,levels=levels,colors='orange')
plt.show()
To finish up I will give a quick example of what it looks in a polar stereographic projection:
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.interpolate import LinearNDInterpolator
from mpl_toolkits.basemap import Basemap
#set up the coordinate projection
m = Basemap(projection='spaeqd',boundinglat=0,lon_0=180,\
resolution='l',round=True,suppress_ticks=True)
parallelGrid = np.arange(-80.,1.,10.)
meridianGrid = np.arange(-180.0,180.1,30)
m.drawparallels(parallelGrid,labels=[False,False,False,False])
m.drawmeridians(meridianGrid,labels=[False,False,False,False],labelstyle='+/-',fmt='%i')
#Found this on stackoverflow - labels it exactly how I want it
ax = plt.gca()
ax.text(0.5,1.025,'N',transform=ax.transAxes,\
horizontalalignment='center',verticalalignment='bottom',size=25)
for para in np.arange(30,360,30):
x= (1.1*0.5*np.sin(np.deg2rad(para)))+0.5
y= (1.1*0.5*np.cos(np.deg2rad(para)))+0.5
ax.text(x,y,u'%i\N{DEGREE SIGN}'%para,transform=ax.transAxes,\
horizontalalignment='center',verticalalignment='center')
#generate some data
x = np.random.randint(180,225,size=15)
y = np.random.randint(30,40,size=15)
#into projection
x,y = m(x,-y)
values = np.vstack([x,y])
pdf_x = np.arange(0,361,1)
pdf_y = np.arange(0,91,1)
#into projection
X,Y = np.meshgrid(pdf_x,pdf_y)
X,Y = m(X,-Y)
kernel = stats.gaussian_kde(values)
positions = np.vstack([X.ravel(), Y.ravel()])
Z = np.reshape(kernel(positions).T, X.shape)
xql = np.percentile(x,25)
xqu = np.percentile(x,75)
yql = np.percentile(y,25)
yqu = np.percentile(y,75)
Interp = LinearNDInterpolator((X.flatten(),Y.flatten()),Z.flatten())
ax = plt.gca()
ax.scatter(x,y)
levels = [Interp(xql,yql),Interp(xqu,yqu)]
ax.contour(X,Y,Z,levels=levels,colors='red')
plt.show()

Plot stack of unit vectors in cylindrical coordinates - matplotlib

I have a python program that calculates angles for me and outputs them in a list.
What I would like to do is plot a stack of arrows that are unit vectors pointing in the direction of the angle. So I thought cylindrical coordinates would be best since they only have one angular coordinate.
I've tried pyplot.quiver but I don't think that can do anything in 3D, and a 3D line plot didn't work either.
Is there a way of doing this without laboriously converting each (length, height, angle) into a pair of vectors (a, b, c),(length*cos(angle), length*sin(angle), height)?
If you have a list of angles, you can easily calculate vectors associated with those angles using numpy.
import numpy as np
import matplotlib.pyplot as plt
angles = np.random.rand(100)
length = 1.
vectors_2d = np.vstack((length * np.cos(angles), length * np.sin(angles))).T
for x, y in vectors_2d:
plt.plot([0, x], [0, y])
plt.show()
If you really want it in cylindrical instead of polar coords, then
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
angles = np.random.rand(100)
length = 1.
heights = np.arange(len(angles))
vectors_3d = np.vstack((length * np.cos(angles),
length * np.sin(angles),
heights)).T
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for x, y, z in vectors_3d:
ax.plot([0, x], [0, y], zs=[z, z])
plt.show()
Edit: I know how to put arrows on plots using pyplot.quiver. However, I don't think mplot3d plays nicely with quiver. Maybe someone like #tcaswell can help out with a work around. But in 2D, you can do
import numpy as np
import matplotlib.pyplot as plt
angles = np.random.rand(100)
# Define coords for arrow tails (the origin)
x0, y0 = np.zeros(100), np.zeros(100)
# Define coords for arrow tips (cos/sin)
x, y = np.cos(angles), np.sin(angles)
# in case you want colored arrows
colors = 'bgrcmyk'
colors *= colors * (len(x0) / len(colors) + 1)
plt.quiver(x0, y0, x, y, color=colors[:len(x0)], scale=1) #scale sets the length
plt.show()

Categories