Creating a rotatable 3D earth - python

I know we can create simple 3-Dimensional spheres using matplotlib, an example of such a sphere is included in the documentation.
Now, we also have a warp method as part of the matplotlib module, an example of it's usage is here .
To warp a cylindrical image to the sphere. Is it possible to combine these methods to create a 3D rotatable earth? Unless my way of thinking about this problem is way off it seems that to be able to do this you would have to take the pixel data of the image and then plot every pixel using the sin and cosine expressions along the surface of the 3D sphere being created in the first example. Some examples of these cylindrical maps can be found here
I know alternative ways to do this are through maya and blender, but I am attempting to stay within matplotlib to do this, as I want to create this plot and then be able to plot geospatial data to the surface using an array of data.

Interesting question. I tried to basically follow the thinking outlined by #Skeletor, and map the image so that it can be shown with plot_surface:
import PIL
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
# load bluemarble with PIL
bm = PIL.Image.open('bluemarble.jpg')
# it's big, so I'll rescale it, convert to array, and divide by 256 to get RGB values that matplotlib accept
bm = np.array(bm.resize([d/5 for d in bm.size]))/256.
# coordinates of the image - don't know if this is entirely accurate, but probably close
lons = np.linspace(-180, 180, bm.shape[1]) * np.pi/180
lats = np.linspace(-90, 90, bm.shape[0])[::-1] * np.pi/180
# repeat code from one of the examples linked to in the question, except for specifying facecolors:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = np.outer(np.cos(lons), np.cos(lats)).T
y = np.outer(np.sin(lons), np.cos(lats)).T
z = np.outer(np.ones(np.size(lons)), np.sin(lats)).T
ax.plot_surface(x, y, z, rstride=4, cstride=4, facecolors = bm)
plt.show()
Result:

Here what I made some hours ago:
First we import the needed libraries:
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import imageio
Secondly, we make the figures and stored them as png in our directory:
Note that I wrote range(0,330,20)
for i in range(0,330,20):
my_map = Basemap(projection='ortho', lat_0=0, lon_0=i, resolution='l', area_thresh=1000.0)
my_map.bluemarble()
my_map.etopo()
name=str(i)
path='/path/to/your/directory/'+name
plt.savefig(path+'.png')
plt.show()
plt.clf()
plt.cla()
plt.close()
And finally we can join all the images in an animated GIF:
images = []
for f in range(0,330,20):
images.append(imageio.imread("/path/to/your/directory/"+str(f)+".png"))
imageio.mimsave('movie.gif', images, duration=0.5)
and then enjoy the result:

I could imagine the following solution:
Using numpy.roll you could shift your array by one column (ore more) with each call. So you could load your image of the earth surface into a numpy array as a template and export the rotated image into a jpg. This you plot as shown in the warp example.

Related

RGB polar plot in Python

I am trying to produce RGB polar plots in Python and I was expecting matplotlib.pyplot.imshow to be able to do it. However, whenever I try plotting data using this method I obtain a blank output.
import matplotlib.pyplot as plt
import numpy as np
data = np.array([[[0,0,1],[0,1,0],[1,0,0]],[[0,0,0.5],[0,0.5,0],[0.5,0,0]]])
# Sample, any N,M,3 data should work
ax = plt.subplot(111,polar=True)
ax.imshow(data,extent=[0,2*np.pi,0,1]) # Produces a white circle
Is there a good way to accomplish this using the aforementioned method or another ?
Thanks.
EDIT: I managed to make a single quadrant by using extent=[0,np.pi/2,0,1] but its use is clearly bugged for polar plots. since anything but a full quadrant doesn't produce the expected outcome.
Using imshow on a polar plot is unfortunately not possible, because the imshow grid is necessarily quadratic in its pixels. You may however use pcolormesh and apply a trick (similar to this one), namely to provide the colors as color argument to pcolormesh, as it would usually just take 2D input.
import matplotlib.pyplot as plt
import numpy as np
data = np.array([[[0,0,1],[0,1,0],[1,0,0]],
[[0,0,0.5],[0,0.5,0],[0.5,0,0]]])
ax = plt.subplot(111, polar=True)
#get coordinates:
phi = np.linspace(0,2*np.pi,data.shape[1]+1)
r = np.linspace(0,1,data.shape[0]+1)
Phi,R = np.meshgrid(phi, r)
# get color
color = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
# plot colormesh with Phi, R as coordinates,
# and some 2D array of the same shape as the image, except the last dimension
# provide colors as `color` argument
m = plt.pcolormesh(Phi,R,data[:,:,0], color=color, linewidth=0)
# This is necessary to let the `color` argument determine the color
m.set_array(None)
plt.show()
The result is not a circle because you do not have enough points. Repeating the data, data = np.repeat(data, 25, axis=1) would then allow to get a circle.

imagesc like feature with non-rectangular grids [MATLAB]

If i want to color a square grid with different color in each grid cells, then it is possible in MATLAB with a simple call to imagesc command like here.
What if i want to color different cells in a grid like this:
Is this functionality available by default in either python or Matlab? I tried discretizing this grid with very small square cells. And then color each cell. That works. But it seems ordinary. Is there a smarter way to get his done?
In python, there is the builtin polar projection for the axes. This projection allows you to automatically use almost every plotting method in polar coordinates. In particular, you need to you pcolor or pcolormesh as follows
import numpy as np
from matplotlib import pyplot as plt
r = np.linspace(0,4,5)
theta = np.linspace(0,2*np.pi,10)
theta,r = np.meshgrid(theta,r)
values = np.random.rand(*(theta.shape))
ax = plt.subplot(111,polar=True)
ax.pcolor(theta,r,values)
plt.show()
Note that this will produce a plot like this
which is almost what you want. The obvious problem is that the patch vertices are joined by straight lines and not lines that follow the circle arc. You can solve this by making the angles array denser. Here is a posible way to do it.
import numpy as np
from matplotlib import pyplot as plt
r = np.linspace(0,4,5)
theta = np.linspace(0,2*np.pi,10)
values = np.random.rand(r.size,theta.size)
dense_theta = np.linspace(0,2*np.pi,100)
v_indeces = np.zeros_like(dense_theta,dtype=np.int)
i = -1
for j,dt in enumerate(dense_theta):
if dt>=theta[i+1]:
i+=1
v_indeces[j] = i
T,R = np.meshgrid(dense_theta,r)
dense_values = np.zeros_like(T)
for i,v in enumerate(values):
for j,ind in enumerate(v_indeces):
dense_values[i,j] = v[ind]
ax = plt.subplot(111,polar=True)
ax.pcolor(T,R,dense_values)
plt.show()
Which would produce
I am not aware of a way to do this in matlab but I googled around and found this that says it can produce pcolor plots in polar coordinates. You should check it out.

Plotting patches of random shapes with matplotlib

This is my target to plot:
Several ellipses which are not regular shape.
(source: clouddn.com)
I was thinking about generating some random number as vertices location.
But it can only build a polygon. So, how to plot several arcs and make them close up?
To create any arbitrary shape, you will need to use the matplotlib.patches.Polygon class and just provide enough x,y samples to make it appear as smooth of a path as necessary (at the end of the day it's still straight line segments when you zoom in close enough).
If you only have a few points, you can use one of many interpolation methods (such as scipy.interpolate.spline) to create a smooth interpolant of the data that you can then feed to the Polygon constructor.
Here is a simple example creating a circle using the Polygon class by supplying x,y points around the circle.
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
# Circle coordinates (100 points around the circle)
t = np.linspace(0, 2 * np.pi, 100).reshape(100,1)
coords = np.concatenate((np.cos(t), np.sin(t)), axis=1)
ax = plt.axes()
polygons = [];
polygons.append(Polygon(coords))
p = PatchCollection(polygons, alpha=0.4)
ax.add_collection(p)
ax.axis('equal')
Sonds just like the example in the official documentation:
http://matplotlib.org/examples/pylab_examples/ellipse_demo.html
the main part, they just construct a list of the ellipses:
ells = [Ellipse(xy=rnd.rand(2)*10, width=rnd.rand(), height=rnd.rand(), angle=rnd.rand()*360) for i in range(250)]
...or did I miss your point? :)

Create a stack of polar plots using Matplotlib/Python

I need to generate a stack of 2D polar plots (a 3D cylindrical plot) so that I can view a distorted cylinder. I want to use matplotlib since I already have it installed and want to distribute my code to others who only have matplotlib. For example, say I have a bunch of 2-D arrays. Is there any way I can do this without having to download an external package? Here's my code.
#!usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-180.0,190.0,10)
theta = (np.pi/180.0 )*x # in radians
A0 = 55.0
offset = 60.0
R = [116.225,115.105,114.697,115.008,115.908,117.184,118.61,119.998,121.224,122.216,\
122.93,123.323,123.343,122.948,122.134,120.963,119.575,118.165,116.941,116.074,115.66\
,115.706,116.154,116.913,117.894,119.029,120.261,121.518,122.684,123.594,124.059,\
123.917,123.096,121.661,119.821,117.894,116.225]
fig = plt.figure()
ax = fig.add_axes([0.1,0.1,0.8,0.8],polar=True) # Polar plot
ax.plot(theta,R,lw=2.5)
ax.set_rmax(1.5*(A0)+offset)
plt.show()
I have 10 more similar 2D polar plots and I want to stack them up nicely. If there's any better way to visualize a distorted cylinder in 3D, I'm totally open to suggestions. Any help would be appreciated. Thanks!
If you want to stack polar charts using matplotlib, one approach is to use the Axes3D module. You'll notice that I used polar coordinates first and then converted them back to Cartesian when I was ready to plot them.
from numpy import *
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
n = 1000
fig = plt.figure()
ax = fig.gca(projection='3d')
for k in linspace(0, 5, 5):
THETA = linspace(0, 2*pi, n)
R = ones(THETA.shape)*cos(THETA*k)
# Convert to Cartesian coordinates
X = R*cos(THETA)
Y = R*sin(THETA)
ax.plot(X, Y, k-2)
plt.show()
If you play with the last argument of ax.plot, it controls the height of each slice. For example, if you want to project all of your data down to a single axis you would use ax.plot(X, Y, 0). For a more exotic example, you can map the height of the data onto a function, say a saddle ax.plot(X, Y, -X**2+Y**2 ). By playing with the colors as well, you could in theory represent multiple 4 dimensional datasets (though I'm not sure how clear this would be). Examples below:

How to plot a data cube in python

I was wondering if there's a way to plot a data cube in Python. I mean I have three coordinate for every point
x=part.points[:,0]
y=part.points[:,1]
z=part.points[:,2]
And for every point I have a scalar field t(x,y,z)
I would like to plot a 3D data cube showing the position of the point and for every point a color which is proportional to the scalar field t in that point.
I tried with histogramdd but it didn't work.
You can use matplotlib.
Here you have a working example (that moves!):
import random
from matplotlib import pyplot
from mpl_toolkits.mplot3d import Axes3D
mypoints = []
for _ in range(100):
mypoints.append([random.random(), #x
random.random(), #y
random.random(), #z
random.randint(10,100)]) #scalar
data = zip(*mypoints) # use list(zip(*mypoints)) with py3k
fig = pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(data[0], data[1], data[2], c=data[3])
pyplot.show()
You probably have to customize the relation of your scalar values with the corresponding colors.
Matplotlib has a very nice look but it can be slow drawing and moving these 3D drawings when you have many points. In these cases I used to use Gnuplot controlled by gnuplot.py. Gnuplot can also be used directly as a subprocess as shown here and here.
Another option is Dots plot, produced by MathGL. It is GPL plotting library. Add it don't need many memory if you save in bitmap format (PNG, JPEG, GIF and so on).

Categories