I am using python and have a plot which looks like this:
Now the problem is that, as most bins are in the range 0-500 on x-axis, so I want to make the x-axis like [0, 100, 200, 300, 400, 500, 1000, 1500, 2000, 2500] and each interval has the same length.
I don't know how to do this in python. Any idea?
Perhaps there's a simpler way to do this, but it's certainly possible to do so in pyplot using these two steps:
Plot a different function, namely one with the same y values but different x values
Manipulate the x-ticks so that it appears like you've plotted your original function (but with a different axis).
I'll start with 2. Note the existence of the xticks, which allows you to do stuff like this:
ticks = [0, 100, 200, 300, 400, 500, 1000, 1500, 2000, 2500]
xticks(range(10), ticks)
This allows you to place both the locations of the xticks, as well as the labels.
Now, for 1., you just need to translate your original x array to a new_x array, which is spread out in arange(10), but non-linearly, according to your labels. If your points are in the array x, then using np.interp1d:
from scipy import interpolate
new_x = interpolate.interp1d(ticks, arange(10))(x)
In conclusion, use plot(new_x, y) with the xticks above.
As already said, you have to map the original abscissae to a new range, and then draw the xtics accordingly... The first part is the toughest, of course, and can be done in different ways, my take uses a vectorized approach using numpy and computes the function body at runtime using eval.
def make_xmap(l):
from numpy import array
ll = len(l)
dy = 1.0 / (ll-1)
def f(l, i):
if i == 0 : return "0.0"
y0 = i*dy-dy
x0, x1 = l[i-1:i+1]
return '%r+%r*(x-%r)/%r'%(y0,dy,x0,x1-x0)
fmt = 'numpy.where(x<%f,%s%s'
body = ' '.join(fmt%(j,f(l,i),"," if i<(ll-1) else ", 1.0") for i, j in enumerate(l))
tail = ')'*ll
def xm(x):
x = array(x)
return eval(body+tail)
return xm
import numpy
xm = make_xmap([0.,200.,1000.])
x = (-10.,0.,100.,200.,600.,1000.,1010)
print xm(x)
# [0.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.0]
Note that you have to import numpy in your code, because we have used numpy.where to construct the function body... If you prefer to import numpy as np modify the fmt string in the factory function...
The second part is easier, if you have an x and an y array to plot, with the subdivision from your example, you can do
import numpy # I touched this point before...
...
intervals = [0., 100., 200., 300., 400., 500., 1000., 1500., 2000., 2500.]
xm = make_xmap(intervals)
plt.plot(xm(x),y)
plt.xticks(xm(intervals), [str(xi) for xi in intervals])
plt.show()
A small optimization
You may want to change
...
tail = ')'*ll
def xm(x):
x = array(x)
return eval(body+tail)
...
to
...
tail = ')'*ll
code = compile(body+tail,'','eval')
def xm(x):
x = array(x)
return eval(code)
...
This small optimization avoids the compilation of the code string every time you call the mapping function, and is of course more relevant if the mapping is used many times on short inputs.
Related
I want to have the legend of the plot shown with the value in a list. But what I get is the element index but not the value itself. I dont know how to fix it. I'm referring to the plt.plot line. Thanks for the help.
import matplotlib.pyplot as plt
import numpy as np
x = np.random.random(1000)
y = np.random.random(1000)
n = len(x)
d_ij = []
for i in range(n):
for j in range(i+1,n):
a = np.sqrt((x[i]-x[j])**2+(y[i]-y[j])**2)
d_ij.append(a)
epsilon = np.linspace(0.01,1,num=10)
sigma = np.linspace(0.01,1,num=10)
def lj_pot(epsi,sig,d):
result = []
for i in range(len(d)):
a = 4*epsi*((sig/d[i])**12-(sig/d[i])**6)
result.append(a)
return result
for i in range(len(epsilon)):
for j in range(len(sigma)):
a = epsilon[i]
b = sigma[j]
plt.cla()
plt.ylim([-1.5, 1.5])
plt.xlim([0, 2])
plt.plot(sorted(d_ij),lj_pot(epsilon[i],sigma[j],sorted(d_ij)),label = 'epsilon = %d, sigma =%d' %(a,b))
plt.legend()
plt.savefig("epsilon_%d_sigma_%d.png" % (i,j))
plt.show()
Your code is a bit unpythonic, so I tried to clean it up to the best of my knowledge. numpy.random.random and numpy.random.uniform(0, 1) are basically the same, however, the latter also allows you to pass the shape of the return array that you would like to have, in this case an array with 1000 rows and two columns (1000, 2). I then use some magic to assign the two colums of the return array to x and y in the same line, respectively.
numpy.hypot does as the name suggests and calculates the hypothenuse of x and y. It can also do that for each entry of arrays with the same size, saving you the for loops, which you should try to aviod in Python since they are pretty slow.
You used plt for all your plotting, which is fine as long as you only have one figure, but I would recommend to be as explicit as possible, according to one of Python's key notions:
explicit is better than implicit.
I recommend you read through this guide, in particular the section called 'Stateful Versus Stateless Approaches'. I changed your commands accordingly.
It is also very unpythonic to loop over items of a list using the index of the item in the list like you did (for i in range(len(list)): item = list[i]). You can just reference the item directly (for item in list:).
Lastly I changed your formatted strings to the more convenient f-strings. Have a read here.
import matplotlib.pyplot as plt
import numpy as np
def pot(epsi, sig, d):
result = 4*epsi*((sig/d)**12 - (sig/d)**6)
return result
# I am not sure why you would create the independent variable this way,
# maybe you are simulating something. In that case, the code below is
# simpler than your version and should achieve the same.
# x, y = zip(*np.random.uniform(0, 1, (1000, 2)))
# d = np.array(sorted(np.hypot(x, y)))
# If you only want to plot your pot function then creating the value range
# like this is just fine.
d = np.linspace(0.001, 1, 1000)
epsilons = sigmas = np.linspace(0.01, 1, num=10)
fig, ax = plt.subplots()
ax.set_xlim([0, 2])
ax.set_ylim([-1.5, 1.5])
line = None
for epsilon in epsilons:
for sigma in sigmas:
if line is None:
line = ax.plot(
d, pot(epsilon, sigma, d),
label=f'epsilon = {epsilon}, sigma = {sigma}'
)[0]
fig.legend()
else:
line.set_data(d, pot(epsilon, sigma, d))
# plt.savefig(f"epsilon_{epsilon}_sigma_{sigma}.png")
fig.show()
I have an (x, y) signal with non-uniform sample rate in x. (The sample rate is roughly proportional to 1/x). I attempted to uniformly re-sample it using scipy.signal's resample function. From what I understand from the documentation, I could pass it the following arguments:
scipy.resample(array_of_y_values, number_of_sample_points, array_of_x_values)
and it would return the array of
[[resampled_y_values],[new_sample_points]]
I'd expect it to return an uniformly sampled data with a roughly identical form of the original, with the same minimal and maximalx value. But it doesn't:
# nu_data = [[x1, x2, ..., xn], [y1, y2, ..., yn]]
# with x values in ascending order
length = len(nu_data[0])
resampled = sg.resample(nu_data[1], length, nu_data[0])
uniform_data = np.array([resampled[1], resampled[0]])
plt.plot(nu_data[0], nu_data[1], uniform_data[0], uniform_data[1])
plt.show()
blue: nu_data, orange: uniform_data
It doesn't look unaltered, and the x scale have been resized too. If I try to fix the range: construct the desired uniform x values myself and use them instead, the distortion remains:
length = len(nu_data[0])
resampled = sg.resample(nu_data[1], length, nu_data[0])
delta = (nu_data[0,-1] - nu_data[0,0]) / length
new_samplepoints = np.arange(nu_data[0,0], nu_data[0,-1], delta)
uniform_data = np.array([new_samplepoints, resampled[0]])
plt.plot(nu_data[0], nu_data[1], uniform_data[0], uniform_data[1])
plt.show()
What is the proper way to re-sample my data uniformly, if not this?
Please look at this rough solution:
import matplotlib.pyplot as plt
from scipy import interpolate
import numpy as np
x = np.array([0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20])
y = np.exp(-x/3.0)
flinear = interpolate.interp1d(x, y)
fcubic = interpolate.interp1d(x, y, kind='cubic')
xnew = np.arange(0.001, 20, 1)
ylinear = flinear(xnew)
ycubic = fcubic(xnew)
plt.plot(x, y, 'X', xnew, ylinear, 'x', xnew, ycubic, 'o')
plt.show()
That is a bit updated example from scipy page. If you execute it, you should see something like this:
Blue crosses are initial function, your signal with non uniform sampling distribution. And there are two results - orange x - representing linear interpolation, and green dots - cubic interpolation. Question is which option you prefer? Personally I don't like both of them, that is why I usually took 4 points and interpolate between them, then another points... to have cubic interpolation without that strange ups. That is much more work, and also I can't see doing it with scipy, so it will be slow. That is why I've asked about size of the data.
I have a data set that has time t and a data d. Unfortunately, I changed the rate of exporting the data after some time (the rate was too high initially). I would like to sample the data so that I effectively remove the high-frequency exported data but maintain the low-frequency exported data near the end.
Consider the following code:
arr = np.loadtxt(file_name,skiprows=3)
Where t = arr[:,0], d = arr[:,1].
Here is a function to get a uniform slicing:
def get_uniform_slices(arr, N_desired_points):
s = arr.shape
if s[0] > N_desired_points:
n_skip = m.ceil(s[0]/N_desired_points)
else:
n_skip = 1
return arr[0::n_skip,:] # Sample output
However, the data then looks fine for the high-frequency exported data, but is too sparse for the low-frequency exported data.
Is there some way to slice such that indexes are uniformly spaced with respect to t?
Any help is greatly appreciated.
This is function I used to find the indexes, based on the accepted answer:
def get_uniform_index(t,N_desired_points):
t_uniform = np.linspace(np.amin(t),np.amax(t),N_desired_points)
t_desired = [nearest(t_d, t) for t_d in t_uniform]
i = np.in1d(t, t_desired)
return i
You have 2d data e.g.,
t = np.arange(0., 100., 0.5)
d = np.random.rand(len(t))
You want to keep only particular values of data at uniformly spaced times, e.g.
t_desired = np.arange(0., 100., 1.)
Let's pick them out the data points desired at the times desired using the in1d function:
d_pruned = d[np.in1d(t, t_desired)]
Of course, you must pick the t_desired and they should match values in t. If that's a problem, you could pick approximately uniform times using e.g.,
def nearest(x, arr):
index = (np.abs(arr - x)).argmin()
return arr[index]
t_uniform = np.arange(0., 100., 1.)
t_desired = [nearest(t_d, t) for t_d in t_uniform]
Here is the complete code:
import numpy as np
t = np.arange(0., 100., 0.5)
d = np.random.rand(len(t))
def nearest(x, arr):
index = (np.abs(arr - x)).argmin()
return arr[index]
t_uniform = np.arange(0., 100., 1.)
t_desired = [nearest(t_d, t) for t_d in t_uniform]
d_pruned = d[np.in1d(t, t_desired)]
I have obtained the coefficients for the Legendre polynomial that best fits my data. Now I am needing to determine the value of that polynomial at each time-step of my data. I need to do this so that I can subtract the fit from my data. I have looked at the documentation for the Legendre module, and I'm not sure if I just don't understand my options or if there isn't a native tool in place for what I want. If my data-points were evenly spaced, linspace would be a good option, but that's not the case here. Does anyone have a suggestion for what to try?
For those who would like to demand a minimum working example of code, just use a random array, get the coefficients, and tell me from there how you would proceed. The values themselves don't matter. It's the technique that I'm asking about here. Thanks.
To simplify Ahmed's example
In [1]: from numpy.polynomial import Polynomial, Legendre
In [2]: p = Polynomial([0.5, 0.3, 0.1])
In [3]: x = np.random.rand(10) * 10
In [4]: y = p(x)
In [5]: pfit = Legendre.fit(x, y, 2)
In [6]: plot(*pfit.linspace())
Out[6]: [<matplotlib.lines.Line2D at 0x7f815364f310>]
In [7]: plot(x, y, 'o')
Out[7]: [<matplotlib.lines.Line2D at 0x7f81535d8bd0>]
The Legendre functions are scaled and offset, as the data should be confined to the interval [-1, 1] to get any advantage over the usual power basis. If you want the coefficients for plain old Legendre functions
In [8]: pfit.convert()
Out[8]: Legendre([ 0.53333333, 0.3 , 0.06666667], [-1., 1.], [-1., 1.])
But that isn't recommended.
Once you have a function, you can just generate a numpy array for the timepoints:
>>> import numpy as np
>>> timepoints = [1,3,7,15,16,17,19]
>>> myarray = np.array(timepoints)
>>> def mypolynomial(bins, pfinal): #pfinal is just the estimate of the final array (i'll do quadratic)
... a,b,c = pfinal # obviously, for a*x^2 + b*x + c
... return (a*bins**2) + b*bins + c
>>> mypolynomial(myarray, (1,1,0))
array([ 2, 12, 56, 240, 272, 306, 380])
It automatically evaluates it for each timepoint is in the numpy array.
Now all you have to do is rewrite mypolynomial to go from a simple quadratic example to a proper one for a Legendre polynomial. Treat the function as if it were evaluating a float to return the value, and when called on the numpy array it will automatically evaluate it for each value.
EDIT:
Let's say I wanted to generalize this to all standard polynomials:
>>> import numpy as np
>>> timepoints = [1,3,7,15,16,17,19]
>>> myarray = np.array(timepoints)
>>> def mypolynomial(bins, pfinal): #pfinal is just the estimate of the final array (i'll do quadratic)
>>> hist = np.zeros((1, len(myarray))) # define blank return
... for i in range(len(pfinal)):
... # fixed a typo here, was pfinal[-i] which would give -0 rather than -1, since negative indexing starts at -1, not -0
... const = pfinal[-i-1] # negative index to go from 0 exponent to highest exponent
... hist += const*(bins**i)
... return hist
>>> mypolynomial(myarray, (1,1,0))
array([ 2, 12, 56, 240, 272, 306, 380])
EDIT2: Typo fix
EDIT3:
#Ahmed is perfect right when he states Homer's rule is good for numerical stability. The implementation here would be as follows:
>>> def horner(coeffs, x):
... acc = 0
... for c in coeffs:
... acc = acc * x + c
... return acc
>>> horner((1,1,0), myarray)
array([ 2, 12, 56, 240, 272, 306, 380])
Slightly modified to keep the same argument order as before, from the code here:
http://rosettacode.org/wiki/Horner%27s_rule_for_polynomial_evaluation#Python
When you're using a nice library to fit polynomials, the library will in my experience usually have a function to evaluate them. So I think it is useful to know how you're generating these coefficients.
In the example below, I used two functions in numpy, legfit and legval which made it trivial to both fit and evaluate the Legendre polynomials without any need to invoke Horner's rule or do the bookkeeping yourself. (Though I do use Horner's rule to generate some example data.)
Here's a complete example where I generate some sparse data from a known polynomial, fit a Legendre polynomial to it, evaluate that polynomial on a dense grid, and plot. Note that the fitting and evaluating part takes three lines thanks to the numpy library doing all the heavy lifting.
It produces the following figure:
import numpy as np
### Setup code
def horner(coeffs, x):
"""Evaluate a polynomial at a point or array"""
acc = 0.0
for c in reversed(coeffs):
acc = acc * x + c
return acc
x = np.random.rand(10) * 10
true_coefs = [0.1, 0.3, 0.5]
y = horner(true_coefs, x)
### Fit and evaluate
legendre_coefs = np.polynomial.legendre.legfit(x, y, 2)
new_x = np.linspace(0, 10)
new_y = np.polynomial.legendre.legval(new_x, legendre_coefs)
### Plotting only
try:
import pylab
pylab.ion() # turn on interactive plotting
pylab.figure()
pylab.plot(x, y, 'o', new_x, new_y, '-')
pylab.xlabel('x')
pylab.ylabel('y')
pylab.title('Fitting Legendre polynomials and evaluating them')
pylab.legend(['original sparse data', 'fit'])
except:
print("Can't start plots.")
The griding the data (d) in irregular grid (x and y) using Scipy's griddata is timecomsuing when the datasets are many. But, the longitudes and latitudes (x and y) are always same, only the data (d) are changing. In this case, once using the giddata, how to repeat the procedure with different d arrys to achieve faster result?
import numpy as np, matplotlib.pyplot as plt
from scipy.interpolate import griddata
x = np.array([110, 112, 114, 115, 119, 120, 122, 124]).astype(float)
y = np.array([60, 61, 63, 67, 68, 70, 75, 81]).astype(float)
d = np.array([4, 6, 5, 3, 2, 1, 7, 9]).astype(float)
ulx, lrx = np.min(x), np.max(x)
uly, lry = np.max(y), np.min(y)
xi = np.linspace(ulx, lrx, 15)
yi = np.linspace(uly, lry, 15)
grided_data = griddata((x, y), d, (xi.reshape(1,-1), yi.reshape(-1,1)), method='nearest',fill_value=0)
plt.imshow(grided_data)
plt.show()
The above code works for one array of d.
But I have hundreds of other arrays.
griddata with nearest ends up using NearestNDInterpolator. That's a class that creates an iterator, which is called with the xi:
elif method == 'nearest':
ip = NearestNDInterpolator(points, values, rescale=rescale)
return ip(xi)
So you could create your own NearestNDInterpolator and call it with multiple times with different xi.
But I think in your case you want to change the values. Looking at the code for that class I see
self.tree = cKDTree(self.points)
self.values = y
the __call__ does:
dist, i = self.tree.query(xi)
return self.values[i]
I don't know the relative cost of creating the tree versus query.
So it should be easy to change values between uses of __call__. And it looks like values could have multiple columns, since it's just indexing on the 1st dimension.
This interpolator is simple enough that you could write your own using the same tree idea.
Here's a Nearest Interpolator that lets you repeat the interpolation for the same points, but different z values. I haven't done timings yet to see how much time it saves
class MyNearest(interpolate.NearestNDInterpolator):
# normal interpolation, but returns the near neighbor indices as well
def __call__(self, *args):
xi = interpolate.interpnd._ndim_coords_from_arrays(args, ndim=self.points.shape[1])
xi = self._check_call_shape(xi)
xi = self._scale_x(xi)
dist, i = self.tree.query(xi)
return i, self.values[i]
def my_griddata(points, values, method='linear', fill_value=np.nan,
rescale=False):
points = interpolate.interpnd._ndim_coords_from_arrays(points)
if points.ndim < 2:
ndim = points.ndim
else:
ndim = points.shape[-1]
assert(ndim==2)
# simplified call for 2d 'nearest'
ip = MyNearest(points, values, rescale=rescale)
return ip # ip(xi) # return iterator, not values
ip = my_griddata((xreg, yreg), z, method='nearest',fill_value=0)
print(ip)
xi = (xi.reshape(1,-1), yi.reshape(-1,1))
I, data = ip(xi)
print(data.shape)
print(I.shape)
print(np.allclose(z[I],data))
z1 = xreg+yreg # new z data
data = z1[I] # should show diagonal color bars
So as long as z has the same shape as before (and as xreg), z[I] will return the nearest value for each xi.
And it can interpolated 2d data as well (e.g. (225,n) shaped)
z1 = np.array([xreg+yreg, xreg-yreg]).T
print(z1.shape) # (225,2)
data = z1[I]
print(data.shape) # (20,20,2)