Related
I made a Fourier Series/Transform Tkinter app, and so far everything works as I want it to, except that I am having issues with the circles misaligning.
Here is an image explaining my issue (the green and pink were added after the fact to better explain the issue):
I have narrowed down the problem to the start of the lines, as it seems that they end in the correct place, and the circles are in their correct places.
The distance between the correct positions and the position where the lines start seems to grow, but is actually proportional to the speed of the circle rotating, as the circle rotates by larger amounts, thus going faster.
Here is the code:
from tkinter import *
import time
import math
import random
root = Tk()
myCanvas = Canvas(root, width=1300, height=750)
myCanvas.pack()
myCanvas.configure(bg="#0A2239")
global x,y, lines, xList, yList
NumOfCircles = 4
rList = [200]
n=3
for i in range(0, NumOfCircles):
rList.append(rList[0]/n)
n=n+2
print(rList)
num = 250/sum(rList)
for i in range(0, NumOfCircles):
rList[i] = rList[i]*num
x=0
y=0
lines = []
circles = []
centerXList = [300]
for i in range(0,NumOfCircles):
centerXList.append(0)
centerYList = [300]
for i in range(0,NumOfCircles):
centerYList.append(0)
xList = [0]*NumOfCircles
yList = [0]*NumOfCircles
waveLines = []
wavePoints = []
con=0
endCoord = []
for i in range(0, NumOfCircles):
endCoord.append([0,0])
lastX = 0
lastY = 0
count = 0
randlist = []
n=1
for i in range(0, NumOfCircles):
randlist.append(200/n)
n=n+2
def createCircle(x, y, r, canvasName):
x0 = x - r
y0 = y - r
x1 = x + r
y1 = y + r
return canvasName.create_oval(x0, y0, x1, y1, width=r/50, outline="#094F9A")
def updateCircle(i):
newX = endCoord[i-1][0]
newY = endCoord[i-1][1]
centerXList[i] = newX
centerYList[i] = newY
x0 = newX - rList[i]
y0 = newY - rList[i]
x1 = newX + rList[i]
y1 = newY + rList[i]
myCanvas.coords(circles[i], x0, y0, x1, y1)
def circleWithLine(i):
global line, lines
circle = createCircle(centerXList[i], centerYList[i], rList[i], myCanvas)
circles.append(circle)
line = myCanvas.create_line(centerXList[i], centerYList[i], centerXList[i], centerYList[i], width=2, fill="#1581B7")
lines.append(line)
def update(i, x, y):
endCoord[i][0] = x+(rList[i]*math.cos(xList[i]))
endCoord[i][1] = y+(rList[i]*math.sin(yList[i]))
myCanvas.coords(lines[i], x, y, endCoord[i][0], endCoord[i][1])
xList[i] += (math.pi/randlist[i])
yList[i] += (math.pi/randlist[i])
def lineBetweenTwoPoints(x, y, x2, y2):
line = myCanvas.create_line(x, y, x2, y2, fill="white")
return line
def lineForWave(y1, y2, y3, y4, con):
l = myCanvas.create_line(700+con, y1, 702+con, y2, 704+con, y3, 706+con, y4, smooth=1, fill="white")
waveLines.append(l)
for i in range(0,NumOfCircles):
circleWithLine(i)
myCanvas.create_line(700, 20, 700, 620, fill="black", width = 3)
myCanvas.create_line(700, 300, 1250, 300, fill="red")
myCanvas.create_line(0, 300, 600, 300, fill="red", width = 0.5)
myCanvas.create_line(300, 0, 300, 600, fill="red", width = 0.5)
while True:
for i in range(0, len(lines)):
update(i, centerXList[i], centerYList[i])
for i in range(1, len(lines)):
updateCircle(i)
if count >= 8:
lineBetweenTwoPoints(lastX, lastY, endCoord[i][0], endCoord[i][1])
if count % 6 == 0 and con<550:
lineForWave(wavePoints[-7],wavePoints[-5],wavePoints[-3],wavePoints[-1], con)
con += 6
wavePoints.append(endCoord[i][1])
myCanvas.update()
lastX = endCoord[i][0]
lastY = endCoord[i][1]
if count != 108:
count += 1
else:
count = 8
time.sleep(0.01)
root.mainloop()
I am aware that this is not the best way to achieve what I am trying to achieve, as using classes would be much better. I plan to do that in case nobody can find a solution, and hope that when it is re-written, this issue does not persist.
The main problem that you are facing is that you receive floating point numbers from your calculations but you can only use integers for pixels. In the following I will show you where you fail and the quickest way to solve the issue.
First your goal is to have connected lines and you calculate the points here:
def update(i, x, y):
endCoord[i][0] = x+(rList[i]*math.cos(xList[i]))
endCoord[i][1] = y+(rList[i]*math.sin(yList[i]))
myCanvas.coords(lines[i], x, y, endCoord[i][0], endCoord[i][1])
xList[i] += (math.pi/randlist[i])
yList[i] += (math.pi/randlist[i])
when you add the following code into this function you see that it fails there.
if i != 0:
print(i,x,y)
print(i,endCoord[i-1][0], endCoord[i-1][1])
Because x and y should always match with the last point (end of the previous line) that will be endCoord[i-1][0] and endCoord[i-1][1].
to solve your problem I simply skipt the match for the sarting point of the follow up lines and took the coordinates of the previous line with the following alternated function:
def update(i, x, y):
endCoord[i][0] = x+(rList[i]*math.cos(xList[i]))
endCoord[i][1] = y+(rList[i]*math.sin(yList[i]))
if i == 0:
points = x, y, endCoord[i][0], endCoord[i][1]
else:
points = endCoord[i-1][0], endCoord[i-1][1], endCoord[i][0], endCoord[i][1]
myCanvas.coords(lines[i], *points)
xList[i] += (math.pi/randlist[i])
yList[i] += (math.pi/randlist[i])
Additional proposals are:
don't use wildcard imports
import just what you really use in the code random isnt used in your example
the use of global in the global namespace is useless
create functions to avoid repetitive code
def listinpt_times_circles(inpt):
return [inpt]*CIRCLES
x_list = listinpt_times_circles(0)
y_list = listinpt_times_circles(0)
center_x_list = listinpt_times_circles(0)
center_x_list.insert(0,300)
center_y_list = listinpt_times_circles(0)
center_y_list.insert(0,300)
use .after(ms,func,*args) instead of a interrupting while loop and blocking call time.sleep
def animate():
global count,con,lastX,lastY
for i in range(0, len(lines)):
update(i, centerXList[i], centerYList[i])
for i in range(1, len(lines)):
updateCircle(i)
if count >= 8:
lineBetweenTwoPoints(lastX, lastY, endCoord[i][0], endCoord[i][1])
if count % 6 == 0 and con<550:
lineForWave(wavePoints[-7],wavePoints[-5],wavePoints[-3],wavePoints[-1], con)
con += 6
wavePoints.append(endCoord[i][1])
myCanvas.update_idletasks()
lastX = endCoord[i][0]
lastY = endCoord[i][1]
if count != 108:
count += 1
else:
count = 8
root.after(10,animate)
animate()
root.mainloop()
read the PEP 8 -- Style Guide for Python
use intuitive variable names to make your code easier to read for others and yourself in the future
list_of_radii = [200] #instead of rList
as said pixels will be expressed with integers not with floating point numbers
myCanvas.create_line(0, 300, 600, 300, fill="red", width = 1) #0.5 has no effect compare 0.1 to 1
using classes and a canvas for each animation will become handy if you want to show more cycles
dont use tkinters update method
As #Thingamabobs said, the main reason for the misalignment is that pixel coordinates work with integer values. I got excited about your project and decided to make an example using matplotlib, this way I do not have to work with integer values for the coordinates. The example was made to work with any function, I implemented samples with sine, square and sawtooth functions.
I also tried to follow some good practices for naming, type annotations and so on, I hope this helps you
from numbers import Complex
from typing import Callable, Iterable, List
import matplotlib.pyplot as plt
import numpy as np
def fourier_series_coeff_numpy(f: Callable, T: float, N: int) -> List[Complex]:
"""Get the coefficients of the Fourier series of a function.
Args:
f (Callable): function to get the Fourier series coefficients of.
T (float): period of the function.
N (int): number of coefficients to get.
Returns:
List[Complex]: list of coefficients of the Fourier series.
"""
f_sample = 2 * N
t, dt = np.linspace(0, T, f_sample + 2, endpoint=False, retstep=True)
y = np.fft.fft(f(t)) / t.size
return y
def evaluate_fourier_series(coeffs: List[Complex], ang: float, period: float) -> List[Complex]:
"""Evaluate a Fourier series at a given angle.
Args:
coeffs (List[Complex]): list of coefficients of the Fourier series.
ang (float): angle to evaluate the Fourier series at.
period (float): period of the Fourier series.
Returns:
List[Complex]: list of complex numbers representing the Fourier series.
"""
N = np.fft.fftfreq(len(coeffs), d=1/len(coeffs))
N = filter(lambda x: x >= 0, N)
y = 0
radius = []
for n, c in zip(N, coeffs):
r = 2 * c * np.exp(1j * n * ang / period)
y += r
radius.append(r)
return radius
def square_function_factory(period: float):
"""Builds a square function with given period.
Args:
period (float): period of the square function.
"""
def f(t):
if isinstance(t, Iterable):
return [1.0 if x % period < period / 2 else -1.0 for x in t]
elif isinstance(t, float):
return 1.0 if t % period < period / 2 else -1.0
return f
def saw_tooth_function_factory(period: float):
"""Builds a saw-tooth function with given period.
Args:
period (float): period of the saw-tooth function.
"""
def f(t):
if isinstance(t, Iterable):
return [1.0 - 2 * (x % period / period) for x in t]
elif isinstance(t, float):
return 1.0 - 2 * (t % period / period)
return f
def main():
PERIOD = 1
GRAPH_RANGE = 3.0
N_COEFFS = 30
f = square_function_factory(PERIOD)
# f = lambda t: np.sin(2 * np.pi * t / PERIOD)
# f = saw_tooth_function_factory(PERIOD)
coeffs = fourier_series_coeff_numpy(f, 1, N_COEFFS)
radius = evaluate_fourier_series(coeffs, 0, 1)
fig, axs = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(10, 5))
ang_cum = []
amp_cum = []
for ang in np.linspace(0, 2*np.pi * PERIOD * 3, 200):
radius = evaluate_fourier_series(coeffs, ang, 1)
x = np.cumsum([x.imag for x in radius])
y = np.cumsum([x.real for x in radius])
x = np.insert(x, 0, 0)
y = np.insert(y, 0, 0)
axs[0].plot(x, y)
axs[0].set_ylim(-GRAPH_RANGE, GRAPH_RANGE)
axs[0].set_xlim(-GRAPH_RANGE, GRAPH_RANGE)
ang_cum.append(ang)
amp_cum.append(y[-1])
axs[1].plot(ang_cum, amp_cum)
axs[0].axhline(y=y[-1],
xmin=x[-1] / (2 * GRAPH_RANGE) + 0.5,
xmax=1.2,
c="black",
linewidth=1,
zorder=0,
clip_on=False)
min_x, max_x = axs[1].get_xlim()
line_end_x = (ang - min_x) / (max_x - min_x)
axs[1].axhline(y=y[-1],
xmin=-0.2,
xmax=line_end_x,
c="black",
linewidth=1,
zorder=0,
clip_on=False)
plt.pause(0.01)
axs[0].clear()
axs[1].clear()
if __name__ == '__main__':
main()
I'm trying to make particles attract each other in Python. It works a bit but they always move to the top-left corner (0;0).
A year ago, CodeParade released a video about a game of life he made with particles. I thought it was cool and wanted to recreate it myself in Python. It wasn't that difficult but I have a problem. Every time some particles are near enough to attract each other, they get a bit closer but at the same time they "run" to the upper-left corner which happens to be (0;0). I first thought I wasn't applying the attraction effect correctly but after re-reading it multiple times I haven't found any errors. Does somebody have any idea why it doesn't work as expected ?
/ Here is the code /
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pygame, random, time
import numpy as np
attraction = [ [-2.6,8.8,10.2,0.7],
[4.1,-3.3,-3.1,4.4],
[0.6,3.7,-0.4,5.1],
[-7.8,0.3,0.3,0.0]]
minR = [[100.0,100.0,100.0,100.0],
[100.0,100.0,100.0,100.0],
[100.0,100.0,100.0,100.0],
[100.0,100.0,100.0,100.0]]
maxR = [[41.7,16.4,22.1,15.0],
[16.4,41.7,32.0,75.1],
[22.1,32.0,55.7,69.9],
[15.0,75.1,69.9,39.5]]
colors = [ (200,50,50),
(200,100,200),
(100,255,100),
(50,100,100)]
#Rouge
#Violet
#Vert
#Cyan
particles = []
#Number of particles
numberParticles = 5
#Width
w = 500
#Height
h = 500
#Radius of particles
r = 4
#Rendering speed
speed = 0.05
#Attraction speed factor
speedFactor = 0.01
#Min distance factor
minRFactor = 0.1
#Max distance factor
maxRFactor = 2
#Attraction factor
attractionFactor = 0.01
def distance(ax, ay, bx, by):
return intg((ax - bx)**2 + (ay - by)**2)
def intg(x):
return int(round(x))
def display(plan):
#Fill with black
#Momentarily moved to main
#pygame.Surface.fill(plan,(0,0,0))
#For each particle, draw it
for particle in particles:
pygame.draw.circle(plan,colors[particle[0]],(particle[1],particle[2]),r)
#Update display
pygame.display.flip()
def update(particles):
newParticles = []
for particleIndex in xrange(len(particles)):
typeId, x, y = particles[particleIndex]
othersX = [[],[],[],[]]
othersY = [[],[],[],[]]
#For every other particles
for otherParticle in particles[0:particleIndex]+particles[particleIndex+1:]:
otherTypeId, otherX, otherY = otherParticle
"""
#Draw minR and maxR of attraction for each color
pygame.draw.circle(screen,colors[otherTypeId],(x,y),intg(minR[typeId][otherTypeId] * minRFactor),1)
pygame.draw.circle(screen,colors[otherTypeId],(x,y),intg(maxR[typeId][otherTypeId] * maxRFactor),1)
"""
#If otherParticle is between minR and maxR from (x;y)
if (minR[typeId][otherTypeId] * minRFactor)**2 <= distance(x,y,otherX,otherY) <= (maxR[typeId][otherTypeId] * maxRFactor)**2:
#Append otherParticle's coordinates to othersX and othersY respectively
othersX[otherTypeId].append(otherX)
othersY[otherTypeId].append(otherY)
#Take the average attractions for each color
othersX = [np.mean(othersX[i]) * attraction[typeId][i] * attractionFactor for i in xrange(len(othersX)) if othersX[i] != []]
othersY = [np.mean(othersY[i]) * attraction[typeId][i] * attractionFactor for i in xrange(len(othersY)) if othersY[i] != []]
#If not attracted, stay in place
if othersX == []:
newX = x
else:
#Take the average attraction
avgX = np.mean(othersX)
#Determine the new x position
newX = x - (x - avgX) * speedFactor
#If out of screen, warp
if newX > w:
newX -= w
elif newX < 0:
newX += w
#If not attracted, stay in place
if othersY == []:
newY = y
else:
#Take the average attraction
avgY = np.mean(othersY)
#Determine the new y position
newY = y - (y - avgY) * speedFactor
#If out of screen, warp
if newY > h:
newY -= h
elif newY < 0:
newY += h
#Append updated particle to newParticles
newParticles.append([typeId,intg(newX),intg(newY)])
return newParticles
if __name__ == "__main__":
#Initialize pygame screen
pygame.init()
screen = pygame.display.set_mode([w,h])
#Particle = [type,posX,posY]
#Create randomly placed particles of random type
for x in xrange(numberParticles):
particles.append([random.randint(0,3),random.randint(0,w),random.randint(0,h)])
display(screen)
#Wait a bit
time.sleep(1)
while True:
#raw_input()
#Fill the screen with black
pygame.Surface.fill(screen,(0,0,0))
#Update particles
particles = update(particles)
#Display particles
display(screen)
#Wait a bit
time.sleep(speed)
The issue is in the lines:
othersX = [np.mean(othersX[i]) * attraction[typeId][i] * attractionFactor for i in range(len(othersX)) if othersX[i] != []]
othersY = [np.mean(othersY[i]) * attraction[typeId][i] * attractionFactor for i in range(len(othersY)) if othersY[i] != []]
othersX and othersY should be positions, but since the coordinates are multiplied by attraction[typeId][i] * attractionFactor, the coordinates are shifted to top left.
This can be evaluated with ease, by omitting the factors:
othersX = [np.mean(othersX[i]) for i in range(len(othersX)) if othersX[i] != []]
othersY = [np.mean(othersY[i]) for i in range(len(othersY)) if othersY[i] != []]
An option is to use vectors form (x, y) to (otherX, otherY) rather than positions:
for otherParticle in particles[0:particleIndex]+particles[particleIndex+1:]:
otherTypeId, otherX, otherY = otherParticle
if (minR[typeId][otherTypeId] * minRFactor)**2 <= distance(x,y,otherX,otherY) <= (maxR[typeId][otherTypeId] * maxRFactor)**2:
# Append otherParticle's coordinates to othersX and othersY respectively
othersX[otherTypeId].append(otherX - x)
othersY[otherTypeId].append(otherY - y)
othersX = [np.mean(othersX[i]) * attraction[typeId][i] * attractionFactor for i in range(len(othersX)) if othersX[i] != []]
othersY = [np.mean(othersY[i]) * attraction[typeId][i] * attractionFactor for i in range(len(othersY)) if othersY[i] != []]
Of course you've to adapt the calculation of the new positions, too:
avgX = np.mean(othersX)
newX = x + avgX * speedFactor
avgY = np.mean(othersY)
newY = y + avgY * speedFactor
As mentioned in the other answer, you should use floating point numbers for the calculations:
def distance(ax, ay, bx, by):
# return intg((ax - bx)**2 + (ay - by)**2)
return (ax - bx)**2 + (ay - by)**2
# newParticles.append([typeId,intg(newX),intg(newY)])
newParticles.append([typeId, newX, newY])
But round to integral coordinates when you draw the circles:
for particle in particles:
# pygame.draw.circle(plan,colors[particle[0]],(particle[1],particle[2]),r)
pygame.draw.circle(plan,colors[particle[0]],(intg(particle[1]),intg(particle[2])),r)
It might be this line here:
newParticles.append([typeId,intg(newX),intg(newY)])
You calculated the position of you particles with high precision earlier, but then the intg() will round all of those numbers down towards 0 before you save it to newparticles. Over time this will skew things towards [0,0].
How I would fix this is by keeping the data in your particles and newparticles as floating point precision, only do the rounding when you have to put things on screen. This way the high accuracy you use will be kept from one timestep to the next.
I have created a random walk scenario where it takes one step in a random direction for a specific number of times. The one thing that I have run in to is that sometimes it will go off of the graphics window that I have set up and I can no longer see where it is at.
Here is the code:
from random import *
from graphics import *
from math import *
def walker():
win = GraphWin('Random Walk', 800, 800)
win.setCoords(-50, -50, 50, 50)
center = Point(0, 0)
x = center.getX()
y = center.getY()
while True:
try:
steps = int(input('How many steps do you want to take? (Positive integer only) '))
if steps > 0:
break
else:
print('Please enter a positive number')
except ValueError:
print('ERROR... Try again')
for i in range(steps):
angle = random() * 2 * pi
newX = x + cos(angle)
newY = y + sin(angle)
newpoint = Point(newX, newY).draw(win)
Line(Point(x, y), newpoint).draw(win)
x = newX
y = newY
walker()
My question is, Is there a way that I can set parameters on the graphics window so that the walker can not go outside the window? And if it tries to, it would just turn around and try another direction?
Try defining upper and lower bounds for x and y. Then use a while loop that keeps trying random points until the next one is in bounds.
from random import *
from graphics import *
from math import *
def walker():
win = GraphWin('Random Walk', 800, 800)
win.setCoords(-50, -50, 50, 50)
center = Point(0, 0)
x = center.getX()
y = center.getY()
while True:
try:
steps = int(input('How many steps do you want to take? (Positive integer only) '))
if steps > 0:
break
else:
print('Please enter a positive number')
except ValueError:
print('ERROR... Try again')
# set upper and lower bounds for next point
upper_X_bound = 50.0
lower_X_bound = -50.0
upper_Y_bound = 50.0
lower_Y_bound = -50.0
for i in range(steps):
point_drawn = 0 # initialize point not drawn yet
while point_drawn == 0: # do until point is drawn
drawpoint = 1 # assume in bounds
angle = random() * 2 * pi
newX = x + cos(angle)
newY = y + sin(angle)
if newX > upper_X_bound or newX < lower_X_bound:
drawpoint = 0 # do not draw, x out of bounds
if newY > upper_Y_bound or newY < lower_Y_bound:
drawpoint = 0 # do not draw, y out of bounds
if drawpoint == 1: # only draw points that are in bounds
newpoint = Point(newX, newY).draw(win)
Line(Point(x, y), newpoint).draw(win)
x = newX
y = newY
point_drawn = 1 # set this to exit while loop
walker()
Is there a way to draw direction fields in python?
My attempt is to modify http://www.compdigitec.com/labs/files/slopefields.py giving
#!/usr/bin/python
import math
from subprocess import CalledProcessError, call, check_call
def dy_dx(x, y):
try:
# declare your dy/dx here:
return x**2-x-2
except ZeroDivisionError:
return 1000.0
# Adjust window parameters
XMIN = -5.0
XMAX = 5.0
YMIN = -10.0
YMAX = 10.0
XSCL = 0.5
YSCL = 0.5
DISTANCE = 0.1
def main():
fileobj = open("data.txt", "w")
for x1 in xrange(int(XMIN / XSCL), int(XMAX / XSCL)):
for y1 in xrange(int(YMIN / YSCL), int(YMAX / YSCL)):
x= float(x1 * XSCL)
y= float(y1 * YSCL)
slope = dy_dx(x,y)
dx = math.sqrt( DISTANCE/( 1+math.pow(slope,2) ) )
dy = slope*dx
fileobj.write(str(x) + " " + str(y) + " " + str(dx) + " " + str(dy) + "\n")
fileobj.close()
try:
check_call(["gnuplot","-e","set terminal png size 800,600 enhanced font \"Arial,12\"; set xrange [" + str(XMIN) + ":" + str(XMAX) + "]; set yrange [" + str(YMIN) + ":" + str(YMAX) + "]; set output 'output.png'; plot 'data.txt' using 1:2:3:4 with vectors"])
except (CalledProcessError, OSError):
print "Error: gnuplot not found on system!"
exit(1)
print "Saved image to output.png"
call(["xdg-open","output.png"])
return 0
if __name__ == '__main__':
main()
However the best image I get from this is.
How can I get an output that looks more like the first image? Also, how can I add the three solid lines?
You can use this matplotlib code as a base. Modify it for your needs.
I have updated the code to show same length arrows. The important option is to set the angles option of the quiver function, so that the arrows are correctly printed from (x,y) to (x+u,y+v) (instead of the default, which just takes into account of (u,v) when computing the angles).
It is also possible to change the axis form "boxes" to "arrows". Let me know if you need that change and I could add it.
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import numpy as np
fig = plt.figure()
def vf(x, t):
dx = np.zeros(2)
dx[0] = 1.0
dx[1] = x[0] ** 2 - x[0] - 2.0
return dx
# Solution curves
t0 = 0.0
tEnd = 10.0
# Vector field
X, Y = np.meshgrid(np.linspace(-5, 5, 20), np.linspace(-10, 10, 20))
U = 1.0
V = X ** 2 - X - 2
# Normalize arrows
N = np.sqrt(U ** 2 + V ** 2)
U = U / N
V = V / N
plt.quiver(X, Y, U, V, angles="xy")
t = np.linspace(t0, tEnd, 100)
for y0 in np.linspace(-5.0, 0.0, 10):
y_initial = [y0, -10.0]
y = odeint(vf, y_initial, t)
plt.plot(y[:, 0], y[:, 1], "-")
plt.xlim([-5, 5])
plt.ylim([-10, 10])
plt.xlabel(r"$x$")
plt.ylabel(r"$y$")
I had a lot of fun making one of these as a hobby project using pygame. I plotted the slope at each pixel, using shades of blue for positive and shades of red for negative. Black is for undefined. This is dy/dx = log(sin(x/y)+cos(y/x)):
You can zoom in & out - here is zoomed in on the middle upper part here:
and also click on a point to graph the line going through that point:
It's just 440 lines of code, so here is the .zip of all the files. I guess I'll excerpt relevant bits here.
The equation itself is input as a valid Python expression in a string, e.g. "log(sin(x/y)+cos(y/x))". This is then compiled. This function here graphs the color field, where self.func.eval() gives the dy/dx at the given point. The code is a bit complicated here because I made it render in stages - first 32x32 blocks, then 16x16, etc. - to make it snappier for the user.
def graphcolorfield(self, sqsizes=[32,16,8,4,2,1]):
su = ScreenUpdater(50)
lastskip = self.xscreensize
quitit = False
for squaresize in sqsizes:
xsquaresize = squaresize
ysquaresize = squaresize
if squaresize == 1:
self.screen.lock()
y = 0
while y <= self.yscreensize:
x = 0
skiprow = y%lastskip == 0
while x <= self.xscreensize:
if skiprow and x%lastskip==0:
x += squaresize
continue
color = (255,255,255)
try:
m = self.func.eval(*self.ct.untranscoord(x, y))
if m >= 0:
if m < 1:
c = 255 * m
color = (0, 0, c)
else:
#c = 255 - 255 * (1.0/m)
#color = (c, c, 255)
c = 255 - 255 * (1.0/m)
color = (c/2.0, c/2.0, 255)
else:
pm = -m
if pm < 1:
c = 255 * pm
color = (c, 0, 0)
else:
c = 255 - 255 * (1.0/pm)
color = (255, c/2.0, c/2.0)
except:
color = (0, 0, 0)
if squaresize > 1:
self.screen.fill(color, (x, y, squaresize, squaresize))
else:
self.screen.set_at((x, y), color)
if su.update():
quitit = True
break
x += xsquaresize
if quitit:
break
y += ysquaresize
if squaresize == 1:
self.screen.unlock()
lastskip = squaresize
if quitit:
break
This is the code which graphs a line through a point:
def _grapheqhelp(self, sx, sy, stepsize, numsteps, color):
x = sx
y = sy
i = 0
pygame.draw.line(self.screen, color, (x, y), (x, y), 2)
while i < numsteps:
lastx = x
lasty = y
try:
m = self.func.eval(x, y)
except:
return
x += stepsize
y = y + m * stepsize
screenx1, screeny1 = self.ct.transcoord(lastx, lasty)
screenx2, screeny2 = self.ct.transcoord(x, y)
#print "(%f, %f)-(%f, %f)" % (screenx1, screeny1, screenx2, screeny2)
try:
pygame.draw.line(self.screen, color,
(screenx1, screeny1),
(screenx2, screeny2), 2)
except:
return
i += 1
stx, sty = self.ct.transcoord(sx, sy)
pygame.draw.circle(self.screen, color, (int(stx), int(sty)), 3, 0)
And it runs backwards & forwards starting from that point:
def graphequation(self, sx, sy, stepsize=.01, color=(255, 255, 127)):
"""Graph the differential equation, given the starting point sx and sy, for length
length using stepsize stepsize."""
numstepsf = (self.xrange[1] - sx) / stepsize
numstepsb = (sx - self.xrange[0]) / stepsize
self._grapheqhelp(sx, sy, stepsize, numstepsf, color)
self._grapheqhelp(sx, sy, -stepsize, numstepsb, color)
I never got around to drawing actual lines because the pixel approach looked too cool.
Try changing your values for the parameters to this:
XSCL = .2
YSCL = .2
These parameters determine how many points are sampled on the axes.
As per your comment, you'll need to also plot the functions for which the derivation dy_dx(x, y) applies.
Currently, you're only calculating and plotting the slope lines as calculated by your function dy_dx(x,y). You'll need to find (in this case 3) functions to plot in addition to the slope.
Start by defining a function:
def f1_x(x):
return x**3-x**2-2x;
and then, in your loop, you'll have to also write the desired values for the functions into the fileobj file.
Hi :)
i have the following python code that generates points lying on a sphere's surface
from math import sin, cos, pi
toRad = pi / 180
ox = 10
oy = -10
oz = 50
radius = 10.0
radBump = 3.0
angleMin = 0
angleMax = 360
angleOffset = angleMin * toRad
angleRange = (angleMax - angleMin) * toRad
steps = 48
angleStep = angleRange / steps
latMin = 0
latMax = 180
latOffset = latMin * toRad
if (latOffset < 0):
latOffset = 0;
latRange = (latMax - latMin) * toRad
if (latRange > pi):
latRange = pi - latOffset;
latSteps = 48
latAngleStep = latRange / latSteps
for lat in range(0, latSteps):
ang = lat * latAngleStep + latOffset
z = cos(ang) * radius + oz
radMod = sin(ang) * radius
for a in range(0, steps):
x = sin(a * angleStep + angleOffset) * radMod + ox
y = cos(a * angleStep + angleOffset) * radMod + oy
print "%f %f %f"%(x,y,z)
after that i plot the points with gnuplot using splot 'datafile'
can you give any hints on how to create deformations on that sphere?
like "mountains" or "spikes" on it?
(something like the openbsd logo ;) : https://https.openbsd.org/images/tshirt-23.gif )
i know it is a trivial question :( but thanks for your time :)
DsP
The approach that springs to my mind, especially with the way you compute a set of points that are not explicitly connected, is to find where the point goes on the sphere's surface, then move it by a distance and direction determined by a set of control points. The control points could have smaller effects the further away they are. For example:
# we have already computed a points position on the sphere, and
# called it x,y,z
for p in controlPoints:
dx = p.x - x
dy = p.y - y
dz = p.z - z
xDisplace += 1/(dx*dx)
yDisplace += 1/(dy*dy)
zDisplace += 1/(dz*dz) # using distance^2 displacement
x += xDisplace
y += yDisplace
z += zDisplace
By changing the control points you can alter the sphere's shape
By changing the movement function, you can alter the way the points shape the sphere
You could get really tricky and have different functions for different points:
# we have already computed a points position on the sphere, and
# called it x,y,z
for p in controlPoints:
xDisplace += p.displacementFunction(x)
yDisplace += p.displacementFunction(y)
zDisplace += p.displacementFunction(z)
x += xDisplace
y += yDisplace
z += zDisplace
If you do not want all control points affecting every point in the sphere, just build that into the displacement function.
How's this?
from math import sin, cos, pi, radians, ceil
import itertools
try:
rng = xrange # Python 2.x
except NameError:
rng = range # Python 3.x
# for the following calculations,
# - all angles are in radians (unless otherwise specified)
# - latitude is in [-pi/2..pi/2]
# - longitude is in [-pi..pi)
MIN_LAT = -pi/2 # South Pole
MAX_LAT = pi/2 # North Pole
MIN_LON = -pi # Far West
MAX_LON = pi # Far East
def floatRange(start, end=None, step=1.0):
"Floating-point range generator"
start += 0.0 # cast to float
if end is None:
end = start
start = 0.0
steps = int(ceil((end-start)/step))
return (start + k*step for k in rng(0, steps+1))
def patch2d(xmin, xmax, ymin, ymax, step=1.0):
"2d rectangular grid generator"
if xmin>xmax:
xmin,xmax = xmax,xmin
xrange = floatRange(xmin, xmax, step)
if ymin>ymax:
ymin,ymax = ymax,ymin
yrange = floatRange(ymin, ymax, step)
return itertools.product(xrange, yrange)
def patch2d_to_3d(xyIter, zFn):
"Convert 2d field to 2.5d height-field"
mapFn = lambda a: (a[0], a[1], zFn(a[0],a[1]))
return itertools.imap(mapFn, xyIter)
#
# Representation conversion functions
#
def to_spherical(lon, lat, rad):
"Map from spherical to spherical coordinates (identity function)"
return lon, lat, rad
def to_cylindrical(lon, lat, rad):
"Map from spherical to cylindrical coordinates"
# angle, z, radius
return lon, rad*sin(lat), rad*cos(lat)
def to_cartesian(lon, lat, rad):
"Map from spherical to Cartesian coordinates"
# x, y, z
cos_lat = cos(lat)
return rad*cos_lat*cos(lon), rad*cos_lat*sin(lon), rad*sin(lat)
def bumpySphere(gridSize, radiusFn, outConv):
lonlat = patch2d(MIN_LON, MAX_LON, MIN_LAT, MAX_LAT, gridSize)
return list(outConv(*lonlatrad) for lonlatrad in patch2d_to_3d(lonlat, radiusFn))
# make a plain sphere of radius 10
sphere = bumpySphere(radians(5.0), lambda x,y: 10.0, to_cartesian)
# spiky-star-function maker
def starFnMaker(xWidth, xOffset, yWidth, yOffset, minRad, maxRad):
# make a spiky-star function:
# longitudinal and latitudinal triangular waveforms,
# joined as boolean intersection,
# resulting in a grid of positive square pyramids
def starFn(x, y, xWidth=xWidth, xOffset=xOffset, yWidth=yWidth, yOffset=yOffset, minRad=minRad, maxRad=maxRad):
xo = ((x-xOffset)/float(xWidth)) % 1.0 # xo in [0.0..1.0), progress across a single pattern-repetition
xh = 2 * min(xo, 1.0-xo) # height at xo in [0.0..1.0]
xHeight = minRad + xh*(maxRad-minRad)
yo = ((y-yOffset)/float(yWidth)) % 1.0
yh = 2 * min(yo, 1.0-yo)
yHeight = minRad + yh*(maxRad-minRad)
return min(xHeight, yHeight)
return starFn
# parameters to spike-star-function maker
width = 2*pi
horDivs = 20 # number of waveforms longitudinally
horShift = 0.0 # longitudinal offset in [0.0..1.0) of a wave
height = pi
verDivs = 10
verShift = 0.5 # leave spikes at the poles
minRad = 10.0
maxRad = 15.0
deathstarFn = starFnMaker(width/horDivs, width*horShift/horDivs, height/verDivs, height*verShift/verDivs, minRad, maxRad)
deathstar = bumpySphere(radians(2.0), deathstarFn, to_cartesian)
so i finally created the deformation using a set of control points that "pull" the spherical
surface. it is heavilly OO and ugly though ;)
thanks for all the help !!!
to use it > afile and with gnuplot : splot 'afile' w l
DsP
from math import sin, cos, pi ,sqrt,exp
class Point:
"""a 3d point class"""
def __init__(self,x,y,z):
self.x = x
self.y = y
self.z = z
def __repr__(self):
return "%f %f %f\n"%(self.x,self.y,self.z)
def __str__(self):
return "point centered: %f %f %f\n"%(self.x,self.y,self.z)
def distance(self,b):
return sqrt((self.x - b.x)**2 +(self.y - b.y)**2 +(self.z -b.z)**2)
def displaceTowards(self,b):
self.x
class ControlPoint(Point):
"""a control point that deforms positions of other points"""
def __init__(self,p):
Point.__init__(self,p.x,p.y,p.z)
self.deformspoints=[]
def deforms(self,p):
self.deformspoints.append(p)
def deformothers(self):
self.deformspoints.sort()
#print self.deformspoints
for i in range(0,len(self.deformspoints)):
self.deformspoints[i].x += (self.x - self.deformspoints[i].x)/2
self.deformspoints[i].y += (self.y - self.deformspoints[i].y)/2
self.deformspoints[i].z += (self.z - self.deformspoints[i].z)/2
class Sphere:
"""returns points on a sphere"""
def __init__(self,radius,angleMin,angleMax,latMin,latMax,discrStep,ox,oy,oz):
toRad = pi/180
self.ox=ox
self.oy=oy
self.oz=oz
self.radius=radius
self.angleMin=angleMin
self.angleMax=angleMax
self.latMin=latMin
self.latMax=latMax
self.discrStep=discrStep
self.angleRange = (self.angleMax - self.angleMin)*toRad
self.angleOffset = self.angleMin*toRad
self.angleStep = self.angleRange / self.discrStep
self.latOffset = self.latMin*toRad
self.latRange = (self.latMax - self.latMin) * toRad
self.latAngleStep = self.latRange / self.discrStep
if(self.latOffset <0):
self.latOffset = 0
if(self.latRange > pi):
self.latRange = pi - latOffset
def CartesianPoints(self):
PointList = []
for lat in range(0,self.discrStep):
ang = lat * self.latAngleStep + self.latOffset
z = cos(ang) * self.radius + self.oz
radMod = sin(ang)*self.radius
for a in range(0,self.discrStep):
x = sin(a*self.angleStep+self.angleOffset)*radMod+self.ox
y = cos(a*self.angleStep+self.angleOffset)*radMod+self.oy
PointList.append(Point(x,y,z))
return PointList
mysphere = Sphere(10.0,0,360,0,180,50,10,10,10)
mylist = mysphere.CartesianPoints()
cpoints = [ControlPoint(Point(0.0,0.0,0.0)),ControlPoint(Point(20.0,0.0,0.0))]
deforpoints=[]
for cp in cpoints:
for p in mylist:
if(p.distance(cp) < 15.0):
cp.deforms(p)
"""print "cp ",cp,"deforms:"
for dp in cp.deformspoints:
print dp ,"at distance", dp.distance(cp)"""
cp.deformothers()
out= mylist.__repr__()
s = out.replace(","," ")
print s