Sometimes self can denote the instance of the class and sometimes the class itself. So why don't we use inst and klass instead of self? Wouldn't that make things easier?
How things are now
class A:
#classmethod
def do(self): # self refers to class
..
class B:
def do(self): # self refers to instance of class
..
How I think they should be
class A:
#classmethod
def do(klass): # no ambiguity
..
class B:
def do(inst): # no ambiguity
..
So how come we don't program like this when in the zen of Python it is stated that explicit is better than implicit? Is there something that I am missing?
Class method support was added much later to Python, and the convention to use self for instances had already been established. Keeping that convention stable has more value than to switch to a longer name like instance.
The convention for class methods is to use the name cls:
class A:
#classmethod
def do(cls):
In other words, the conventions are already there to distinguish between a class object and the instance; never use self for class methods.
Also see PEP 8 - Function and method arguments:
Always use self for the first argument to instance methods.
Always use cls for the first argument to class methods.
I think it would be better to use "cls":
class A:
#classmethod
def do(cls): # cls refers to class
..
class B:
def do(self): # self refers to instance of class
..
It's requirement of PEP8:
http://legacy.python.org/dev/peps/pep-0008/#function-and-method-arguments
I think the point is that conventially you don't use self for methods wrapped with #classmethod. (You could write kls, cls, etc.)
There is ultimately nothing stopping you from writing inst instead of self if you so desire. So your second example would work fine and is actually the expected way to handle it (in terms of distinguishing an instance vs a class). However, you should definitely use self when dealing with instances. It's a Python convention and breaking it is strongly discouraged.
PEP8
Seeing as others have mentioned it, it's true PEP8 does say to use both self and cls in the case of instance and class methods, respectively. The only thing I'd add to this is that while there isn't any sensible reason to break this rule, changing self is significantly worse (from a semantic POV) because of its strong use inside of 99.999% of Python code. Its use is so universal that many (if not most) beginners assume it's a keyword and are confused by the idea that one can change self to anything.
This strong relationship to code and convention is not so apparent with class methods IMO. Of course I would urge anyone to follow PEP8 as much as possible, but if you felt inclined to use kls instead of cls, I feel that you'd be committing a lesser evil than if you changed self. However, whichever name you go with should remain consistent throughout your program.
Related
I just can't see why do we need to use #staticmethod. Let's start with an exmaple.
class test1:
def __init__(self,value):
self.value=value
#staticmethod
def static_add_one(value):
return value+1
#property
def new_val(self):
self.value=self.static_add_one(self.value)
return self.value
a=test1(3)
print(a.new_val) ## >>> 4
class test2:
def __init__(self,value):
self.value=value
def static_add_one(self,value):
return value+1
#property
def new_val(self):
self.value=self.static_add_one(self.value)
return self.value
b=test2(3)
print(b.new_val) ## >>> 4
In the example above, the method, static_add_one , in the two classes do not require the instance of the class(self) in calculation.
The method static_add_one in the class test1 is decorated by #staticmethod and work properly.
But at the same time, the method static_add_one in the class test2 which has no #staticmethod decoration also works properly by using a trick that provides a self in the argument but doesn't use it at all.
So what is the benefit of using #staticmethod? Does it improve the performance? Or is it just due to the zen of python which states that "Explicit is better than implicit"?
The reason to use staticmethod is if you have something that could be written as a standalone function (not part of any class), but you want to keep it within the class because it's somehow semantically related to the class. (For instance, it could be a function that doesn't require any information from the class, but whose behavior is specific to the class, so that subclasses might want to override it.) In many cases, it could make just as much sense to write something as a standalone function instead of a staticmethod.
Your example isn't really the same. A key difference is that, even though you don't use self, you still need an instance to call static_add_one --- you can't call it directly on the class with test2.static_add_one(1). So there is a genuine difference in behavior there. The most serious "rival" to a staticmethod isn't a regular method that ignores self, but a standalone function.
Today I suddenly find a benefit of using #staticmethod.
If you created a staticmethod within a class, you don't need to create an instance of the class before using the staticmethod.
For example,
class File1:
def __init__(self, path):
out=self.parse(path)
def parse(self, path):
..parsing works..
return x
class File2:
def __init__(self, path):
out=self.parse(path)
#staticmethod
def parse(path):
..parsing works..
return x
if __name__=='__main__':
path='abc.txt'
File1.parse(path) #TypeError: unbound method parse() ....
File2.parse(path) #Goal!!!!!!!!!!!!!!!!!!!!
Since the method parse is strongly related to the classes File1 and File2, it is more natural to put it inside the class. However, sometimes this parse method may also be used in other classes under some circumstances. If you want to do so using File1, you must create an instance of File1 before calling the method parse. While using staticmethod in the class File2, you may directly call the method by using the syntax File2.parse.
This makes your works more convenient and natural.
I will add something other answers didn't mention. It's not only a matter of modularity, of putting something next to other logically related parts. It's also that the method could be non-static at other point of the hierarchy (i.e. in a subclass or superclass) and thus participate in polymorphism (type based dispatching). So if you put that function outside the class you will be precluding subclasses from effectively overriding it. Now, say you realize you don't need self in function C.f of class C, you have three two options:
Put it outside the class. But we just decided against this.
Do nothing new: while unused, still keep the self parameter.
Declare you are not using the self parameter, while still letting other C methods to call f as self.f, which is required if you wish to keep open the possibility of further overrides of f that do depend on some instance state.
Option 2 demands less conceptual baggage (you already have to know about self and methods-as-bound-functions, because it's the more general case). But you still may prefer to be explicit about self not being using (and the interpreter could even reward you with some optimization, not having to partially apply a function to self). In that case, you pick option 3 and add #staticmethod on top of your function.
Use #staticmethod for methods that don't need to operate on a specific object, but that you still want located in the scope of the class (as opposed to module scope).
Your example in test2.static_add_one wastes its time passing an unused self parameter, but otherwise works the same as test1.static_add_one. Note that this extraneous parameter can't be optimized away.
One example I can think of is in a Django project I have, where a model class represents a database table, and an object of that class represents a record. There are some functions used by the class that are stand-alone and do not need an object to operate on, for example a function that converts a title into a "slug", which is a representation of the title that follows the character set limits imposed by URL syntax. The function that converts a title to a slug is declared as a staticmethod precisely to strongly associate it with the class that uses it.
I want to figure out the type of the class in which a certain method is defined (in essence, the enclosing static scope of the method), from within the method itself, and without specifying it explicitly, e.g.
class SomeClass:
def do_it(self):
cls = enclosing_class() # <-- I need this.
print(cls)
class DerivedClass(SomeClass):
pass
obj = DerivedClass()
# I want this to print 'SomeClass'.
obj.do_it()
Is this possible?
If you need this in Python 3.x, please see my other answer—the closure cell __class__ is all you need.
If you need to do this in CPython 2.6-2.7, RickyA's answer is close, but it doesn't work, because it relies on the fact that this method is not overriding any other method of the same name. Try adding a Foo.do_it method in his answer, and it will print out Foo, not SomeClass
The way to solve that is to find the method whose code object is identical to the current frame's code object:
def do_it(self):
mro = inspect.getmro(self.__class__)
method_code = inspect.currentframe().f_code
method_name = method_code.co_name
for base in reversed(mro):
try:
if getattr(base, method_name).func_code is method_code:
print(base.__name__)
break
except AttributeError:
pass
(Note that the AttributeError could be raised either by base not having something named do_it, or by base having something named do_it that isn't a function, and therefore doesn't have a func_code. But we don't care which; either way, base is not the match we're looking for.)
This may work in other Python 2.6+ implementations. Python does not require frame objects to exist, and if they don't, inspect.currentframe() will return None. And I'm pretty sure it doesn't require code objects to exist either, which means func_code could be None.
Meanwhile, if you want to use this in both 2.7+ and 3.0+, change that func_code to __code__, but that will break compatibility with earlier 2.x.
If you need CPython 2.5 or earlier, you can just replace the inpsect calls with the implementation-specific CPython attributes:
def do_it(self):
mro = self.__class__.mro()
method_code = sys._getframe().f_code
method_name = method_code.co_name
for base in reversed(mro):
try:
if getattr(base, method_name).func_code is method_code:
print(base.__name__)
break
except AttributeError:
pass
Note that this use of mro() will not work on classic classes; if you really want to handle those (which you really shouldn't want to…), you'll have to write your own mro function that just walks the hierarchy old-school… or just copy it from the 2.6 inspect source.
This will only work in Python 2.x implementations that bend over backward to be CPython-compatible… but that includes at least PyPy. inspect should be more portable, but then if an implementation is going to define frame and code objects with the same attributes as CPython's so it can support all of inspect, there's not much good reason not to make them attributes and provide sys._getframe in the first place…
First, this is almost certainly a bad idea, and not the way you want to solve whatever you're trying to solve but refuse to tell us about…
That being said, there is a very easy way to do it, at least in Python 3.0+. (If you need 2.x, see my other answer.)
Notice that Python 3.x's super pretty much has to be able to do this somehow. How else could super() mean super(THISCLASS, self), where that THISCLASS is exactly what you're asking for?*
Now, there are lots of ways that super could be implemented… but PEP 3135 spells out a specification for how to implement it:
Every function will have a cell named __class__ that contains the class object that the function is defined in.
This isn't part of the Python reference docs, so some other Python 3.x implementation could do it a different way… but at least as of 3.2+, they still have to have __class__ on functions, because Creating the class object explicitly says:
This class object is the one that will be referenced by the zero-argument form of super(). __class__ is an implicit closure reference created by the compiler if any methods in a class body refer to either __class__ or super. This allows the zero argument form of super() to correctly identify the class being defined based on lexical scoping, while the class or instance that was used to make the current call is identified based on the first argument passed to the method.
(And, needless to say, this is exactly how at least CPython 3.0-3.5 and PyPy3 2.0-2.1 implement super anyway.)
In [1]: class C:
...: def f(self):
...: print(__class__)
In [2]: class D(C):
...: pass
In [3]: D().f()
<class '__main__.C'>
Of course this gets the actual class object, not the name of the class, which is apparently what you were after. But that's easy; you just need to decide whether you mean __class__.__name__ or __class__.__qualname__ (in this simple case they're identical) and print that.
* In fact, this was one of the arguments against it: that the only plausible way to do this without changing the language syntax was to add a new closure cell to every function, or to require some horrible frame hacks which may not even be doable in other implementations of Python. You can't just use compiler magic, because there's no way the compiler can tell that some arbitrary expression will evaluate to the super function at runtime…
If you can use #abarnert's method, do it.
Otherwise, you can use some hardcore introspection (for python2.7):
import inspect
from http://stackoverflow.com/a/22898743/2096752 import getMethodClass
def enclosing_class():
frame = inspect.currentframe().f_back
caller_self = frame.f_locals['self']
caller_method_name = frame.f_code.co_name
return getMethodClass(caller_self.__class__, caller_method_name)
class SomeClass:
def do_it(self):
print(enclosing_class())
class DerivedClass(SomeClass):
pass
DerivedClass().do_it() # prints 'SomeClass'
Obviously, this is likely to raise an error if:
called from a regular function / staticmethod / classmethod
the calling function has a different name for self (as aptly pointed out by #abarnert, this can be solved by using frame.f_code.co_varnames[0])
Sorry for writing yet another answer, but here's how to do what you actually want to do, rather than what you asked for:
this is about adding instrumentation to a code base to be able to generate reports of method invocation counts, for the purpose of checking certain approximate runtime invariants (e.g. "the number of times that method ClassA.x() is executed is approximately equal to the number of times that method ClassB.y() is executed in the course of a run of a complicated program).
The way to do that is to make your instrumentation function inject the information statically. After all, it has to know the class and method it's injecting code into.
I will have to instrument many classes by hand, and to prevent mistakes I want to avoid typing the class names everywhere. In essence, it's the same reason why typing super() is preferable to typing super(ClassX, self).
If your instrumentation function is "do it manually", the very first thing you want to turn it into an actual function instead of doing it manually. Since you obviously only need static injection, using a decorator, either on the class (if you want to instrument every method) or on each method (if you don't) would make this nice and readable. (Or, if you want to instrument every method of every class, you might want to define a metaclass and have your root classes use it, instead of decorating every class.)
For example, here's an easy way to instrument every method of a class:
import collections
import functools
import inspect
_calls = {}
def inject(cls):
cls._calls = collections.Counter()
_calls[cls.__name__] = cls._calls
for name, method in cls.__dict__.items():
if inspect.isfunction(method):
#functools.wraps(method)
def wrapper(*args, **kwargs):
cls._calls[name] += 1
return method(*args, **kwargs)
setattr(cls, name, wrapper)
return cls
#inject
class A(object):
def f(self):
print('A.f here')
#inject
class B(A):
def f(self):
print('B.f here')
#inject
class C(B):
pass
#inject
class D(C):
def f(self):
print('D.f here')
d = D()
d.f()
B.f(d)
print(_calls)
The output:
{'A': Counter(),
'C': Counter(),
'B': Counter({'f': 1}),
'D': Counter({'f': 1})}
Exactly what you wanted, right?
You can either do what #mgilson suggested or take another approach.
class SomeClass:
pass
class DerivedClass(SomeClass):
pass
This makes SomeClass the base class for DerivedClass.
When you normally try to get the __class__.name__ then it will refer to derived class rather than the parent.
When you call do_it(), it's really passing DerivedClass as self, which is why you are most likely getting DerivedClass being printed.
Instead, try this:
class SomeClass:
pass
class DerivedClass(SomeClass):
def do_it(self):
for base in self.__class__.__bases__:
print base.__name__
obj = DerivedClass()
obj.do_it() # Prints SomeClass
Edit:
After reading your question a few more times I think I understand what you want.
class SomeClass:
def do_it(self):
cls = self.__class__.__bases__[0].__name__
print cls
class DerivedClass(SomeClass):
pass
obj = DerivedClass()
obj.do_it() # prints SomeClass
[Edited]
A somewhat more generic solution:
import inspect
class Foo:
pass
class SomeClass(Foo):
def do_it(self):
mro = inspect.getmro(self.__class__)
method_name = inspect.currentframe().f_code.co_name
for base in reversed(mro):
if hasattr(base, method_name):
print(base.__name__)
break
class DerivedClass(SomeClass):
pass
class DerivedClass2(DerivedClass):
pass
DerivedClass().do_it()
>> 'SomeClass'
DerivedClass2().do_it()
>> 'SomeClass'
SomeClass().do_it()
>> 'SomeClass'
This fails when some other class in the stack has attribute "do_it", since this is the signal name for stop walking the mro.
Is there any way to apply staticmethod to all methods of a given class.
I was thinking we can access methods in its metaclass (in new of metaclass) and apply staticmethod, but i am not aware of syntax. Can any one please shed light on this?
If none of the methods share any state, there's not much of a reason to have a class at all. a module with functions is probably a better idea ...
While a module (as suggested by mgilson) is a better option, if you really have a good use for this (I can't think of one), it's relatively easy with the inspect module and a class decorator:
import inspect
def staticmethods(cls):
for name, method in inspect.getmembers(cls, inspect.ismethod):
setattr(cls, name, staticmethod(method.__func__))
return cls
#staticmethods
class Test:
def test():
print("Test")
Test.test()
All the class decorator does is loop through the methods on the object with inspect.getmembers(), then overwrites the function with a staticmethod() of the original (unbound) function.
Note that I would use a module over a class for this, and probably also just manually call #staticmethod on each function over doing it this way (as this, for example, breaks my editor's inspections). This answer is given to show it's possible, because it's a pretty simple implementation.
mgilson's answer is best, but to add another pattern which is often used for defining a class as a namespace, you could also instantiate the class, overwriting the class name:
class Test:
def a_static_method(self, arg1, srg2):
pass
Test = Test()
Be aware, though, that after this Test is actually a class instance, which might be misleading depending on how you're using it.
I frequently do this sort of thing:
class Person(object):
def greet(self):
print "Hello"
class Waiter(Person):
def greet(self):
Person.greet(self)
print "Would you like fries with that?"
The line Person.greet(self) doesn't seem right. If I ever change what class Waiter inherits from I'm going to have to track down every one of these and replace them all.
What is the correct way to do this is modern Python? Both 2.x and 3.x, I understand there were changes in this area in 3.
If it matters any I generally stick to single inheritance, but if extra stuff is required to accommodate multiple inheritance correctly it would be good to know about that.
You use super:
Return a proxy object that delegates
method calls to a parent or sibling
class of type. This is useful for
accessing inherited methods that have
been overridden in a class. The search
order is same as that used by
getattr() except that the type itself
is skipped.
In other words, a call to super returns a fake object which delegates attribute lookups to classes above you in the inheritance chain. Points to note:
This does not work with old-style classes -- so if you are using Python 2.x, you need to ensure that the top class in your hierarchy inherits from object.
You need to pass your own class and instance to super in Python 2.x. This requirement was waived in 3.x.
This will handle all multiple inheritance correctly. (When you have a multiple inheritance tree in Python, a method resolution order is generated and the lookups go through parent classes in this order.)
Take care: there are many places to get confused about multiple inheritance in Python. You might want to read super() Considered Harmful. If you are sure that you are going to stick to a single inheritance tree, and that you are not going to change the names of classes in said tree, you can hardcode the class names as you do above and everything will work fine.
Not sure if you're looking for this but you can call a parent without referring to it by doing this.
super(Waiter, self).greet()
This will call the greet() function in Person.
katrielalex's answer is really the answer to your question, but this wouldn't fit in a comment.
If you plan to go about using super everywhere, and you ever think in terms of multiple inheritance, definitely read the "super() Considered Harmful" link. super() is a great tool, but it takes understanding to use correctly. In my experience, for simple things that don't seem likely to get into complicated diamond inheritance tangles, it's actually easier and less tedious to just call the superclass directly and deal with the renames when you change the name of the base class.
In fact, in Python2 you have to include the current class name, which is usually more likely to change than the base class name. (And in fact sometimes it's very difficult to pass a reference to the current class if you're doing wacky things; at the point when the method is being defined the class isn't bound to any name, and at the point when the super call is executed the original name of the class may not still be bound to the class, such as when you're using a class decorator)
I'd like to make it more explicit in this answer with an example. It's just like how we do in JavaScript. The short answer is, do that like we initiate the constructor using super.
class Person(object):
def __init__(self, name):
self.name = name
def greet(self):
print(f"Hello, I'm {self.name}")
class Waiter(Person):
def __init__(self, name):
super().__init__(name)
# initiate the parent constructor
# or super(Waiter, self).__init__(name)
def greet(self):
super(Waiter, self).greet()
print("Would you like fries with that?")
waiter = Waiter("John")
waiter.greet()
# Hello, I'm John
# Would you like fries with that?
I have a question about righteous way of programming in Python... Maybe there can be several different opinions, but here it goes:
Let's say I have a class with a couple of private attributes and that I have implemented two getters/setters (not overloading __getattr__ and __setattr__, but in a more “Java-tistic” style):
class MyClass:
def __init__(self):
self.__private1 = "Whatever1"
def setPrivate1(self, private1):
if isinstance(private1, str) and (private1.startswith("private")):
self.__private1 = private1
else:
raise AttributeError("Kaputt")
def getPrivate1(self):
return self.__private1
Now let's say a few lines below, in another method of the same class, I need to re-set the value of that “__private1”. Since it's the same class, I still have direct access to the private attribute self.__private1.
My question is: Should I use:
self.setPrivate1("privateBlaBlaBla")
or should I access directly as:
self.__private1 ="privateBlaBlaBla"
since I am the one setting the new value, I know that said value (“privateBlaBlaBla”) is correct (an str() that starts with “private”), so it is not going to leave the system inconsistent. On the other hand, if another programmer takes my code, and needs to change the functionality for the self.__private1 attribute, he will need to go through all the code, and see if the value of __private1 has been manually set somewhere else.
My guess is that the right thing to do is to always using the setPrivate1 method, and only access directly the __private1 variable in the get/set, but I'd like to know the opinion of more experienced Python programmers.
You can't present a classic example of bad Python and then expect people to have opinions on what do to about it. Use getters and setters.
class MyClass:
def __init__(self):
self._private1 = "Whatever1"
#property
def private1(self):
return self._private1
#private1.setter
def private1(self, value):
self._private1 = value
A side comment -- using double underscore names can be confusing, because Python actually mangles the name to stop you accessing them from outside the class. This provides no real security, but causes no end of headaches. The easiest way to avoid the headaches is to use single-underscore names, which is basically a universal convention for private. (Ish.)
If you want an opinion -- use properties =). If you want an opinion on your JavaPython monstrosity, I would use the setter -- after all, you've written it, that's what it's there for! There's no obvious benefit to setting the variable by hand, but there are several drawbacks.
Neither. In Python, use properties, not getters and setters.
class MyClass:
def __init__(self):
self._private1 = "Whatever1"
#property
def private1(self):
return self._private1
#private1.setter
def private1(self, private1):
if isinstance(private1, str) and (private1.startswith("private")):
self._private1 = private1
else:
raise AttributeError("Kaputt")
Then later on in your code, set the _private1 attribute with
self.private1="privateBlaBlaBla"