Yowsup installation missing connectionmanager.py - python

It seems that I cannot get yowsup properly installed under Windows 7.
I am following these procedures for installation:
https://github.com/tgalal/yowsup/blob/master/README.md
doing a
pip install yowsup2
python setup.py install
I have omitted installation of zlib since I do know where the dll is,
but not in which directory I should copy it.
Everything runs fine when using yowsup-cli, I can send and receive messages.
However, I cannot run samples on signals and methods such as shown:
https://github.com/tgalal/yowsup/wiki/%5BLegacy%5D-Yowsup-Documentation
since I cannot find the file connectionmanager.py, this is not installed or created.
Any help appreciated, thanks!

There are two branches: legacy (yowsup) and master (yowsup2)
Yowsup2 is the newer version with a clean up of the code compared to yowsup(legacy).
What you did is installing yowsup2 but you tried to use functions of the legacy package. (Imagine an old car as legacy without automatic but you trying to use it)
Also Yowsup2 (master) will get updates and that stuff while legacy won't be updated anymore.
If you have any more questions feel free to ask.

It seems that one needs to do an additional
pin install Yowsup
(mind the capital letter, and no trailing '2' here)
to install the legacy package which includes the connectionmanager.py
However, this is installed in the directory yowsup starting with a small 'y', but modules in the scripts are still not found since they refer to a Yowsup directory with capital Y.
Confused.

Related

Problem Installing Python Package from Bitbucket Repository

I'm having a crazy problem installing a package I built and placed in a bitbucket repository to a local environment.
I built the package.
I was successfully able to connect to it from Pycharm locally by doing:
pip install -e path/to/repository
I then pushed the built package to bitbucket.
I then switched local environments and pip installed the package from bitbucket as follows:
pip install git+https://my_name#bitbucket.org/my_company/my_repo.git
The package successfully installed locally.
I see it in pycharm and pycharm sees it in the environment site-packages. It looks like this:
I can't tell if it is installed properly but I note there are no .py files.
The script in this environment doesn't see the package.
I get the following error:
Any guidance on what could be wrong? Again, everything works fine when I'm local and using pip install -e. The code works. Just can't get it to work from pushed distribution packages from a remote repository.
Thanks in advance.
I don't know if this counts as a true solve but got it working. And after about 10 hours of work on this I'm not exactly sure how. I believe the issue may boil down to a stray comma - yes a comma - in the setup file which was not enough to throw an error but somehow left the build without some necessary parameter which resulted in a bad build when trying to install from the repository.
This also raises questions for me as to how pip install e works. This because my local editable install worked fine.
Very troublesome that I can't definitively identify the cause of this issue though I've seemed to resolve it.

setup.py + virtualenv = chicken and egg issue?

I'm a Java/Scala dev transitioning to Python for a work project. To dust off the cobwebs on the Python side of my brain, I wrote a webapp that acts as a front-end for Docker when doing local Docker work. I'm now working on packaging it up and, as such, am learning about setup.py and virtualenv. Coming from the JVM world, where dependencies aren't "installed" so much as downloaded to a repository and referenced when needed, the way pip handles things is a bit foreign. It seems like best practice for production Python work is to first create a virtual environment for your project, do your coding work, then package it up with setup.py.
My question is, what happens on the other end when someone needs to install what I've written? They too will have to create a virtual environment for the package but won't know how to set it up without inspecting the setup.py file to figure out what version of Python to use, etc. Is there a way for me to create a setup.py file that also creates the appropriate virtual environment as part of the install process? If not — or if that's considered a "no" as this respondent stated to this SO post — what is considered "best practice" in this situation?
You can think of virtualenv as an isolation for every package you install using pip. It is a simple way to handle different versions of python and packages. For instance you have two projects which use same packages but different versions of them. So, by using virtualenv you can isolate those two projects and install different version of packages separately, not on your working system.
Now, let's say, you want work on a project with your friend. In order to have the same packages installed you have to share somehow what versions and which packages your project depends on. If you are delivering a reusable package (a library) then you need to distribute it and here where setup.py helps. You can learn more in Quick Start
However, if you work on a web site, all you need is to put libraries versions into a separate file. Best practice is to create separate requirements for tests, development and production. In order to see the format of the file - write pip freeze. You will be presented with a list of packages installed on the system (or in the virtualenv) right now. Put it into the file and you can install it later on another pc, with completely clear virtualenv using pip install -r development.txt
And one more thing, please do not put strict versions of packages like pip freeze shows, most of time you want >= at least X.X version. And good news here is that pip handles dependencies by its own. It means you do not have to put dependent packages there, pip will sort it out.
Talking about deploy, you may want to check tox, a tool for managing virtualenvs. It helps a lot with deploy.
Python default package path always point to system environment, that need Administrator access to install. Virtualenv able to localised the installation to an isolated environment.
For deployment/distribution of package, you can choose to
Distribute by source code. User need to run python setup.py --install, or
Pack your python package and upload to Pypi or custom Devpi. So the user can simply use pip install <yourpackage>
However, as you notice the issue on top : without virtualenv, they user need administrator access to install any python package.
In addition, the Pypi package worlds contains a certain amount of badly tested package that doesn't work out of the box.
Note : virtualenv itself is actually a hack to achieve isolation.

Remove Old Version of Python Package on Install

I'm creating a Django package that contains some core functionality I will use across multiple web apps.
Now, this is the first time I'm creating a Django/Python package. I have read up on existing documentation and tutorials.
My problem is that, every time I make a change to the package and recreate the package, and reinstall it using the "python setup.py install" method, the new package is in fact installed, but the previous version remains.
So, for example, right now I have the latest 3 versions of the package installed in my machine.
How do I make it so an installation of the package removes all previous installations of the same package?
Thank you
It seems that this is a known problem.
The reporter of Issue 5342 has the same issue with old files persisting in the install directory.
Per Issue 4673, distutils2 now has an uninstall command that you could use to clean your directory on an install. Perhaps you could override the install command such that it first tries to uninstall an old package first?
Otherwise, it seems the solution is:
to hack some old file detection into each package, or tell users 'delete
the old install first'. Neither of which is really nice.

Python namespace packages on Ubuntu 11 with setuptools 0.6c11

Hi fellow Python programmers,
I recently felt the urge to update my operating system, and wiped out the existing Ubuntu 10 install for 11.10. I was already using python 2.7 on the older system. After I set up the prerequisites for our code base, I created a virtual environment, and ran python setup.py develop to install the dependencies for the code base. Everything ran smoothly, but when I tried to start the app, python was unable to import some packages which were successfully installed. These are namespace packages, such as repoze.what.
The weird thing is, I looked at the version of setuptools that we are using on our deployment system, and it is the same as on my machine (0.6c11). I'm at a loss as to where the difference may be, and what is causing the problem.
One thing that I tried is to create the virtual environment using distribute instead of setuptools, but that did not help.
Any help would be highly appreciated, since this is holding me back from doing any serious work.
Cheers, and thanks in advance.
This discussion suggest that you may want to list setuptools explicitly as a dependency for a package that has namespace packages. I found out that my packages (which also have namespaces) install well with pip, but sometimes cannot be imported if installed by easy_install.

Migrating to pip+virtualenv from setuptools

So pip and virtualenv sound wonderful compared to setuptools. Being able to uninstall would be great. But my project is already using setuptools, so how do I migrate? The web sites I've been able to find so far are very vague and general. So here's an anthology of questions after reading the main web sites and trying stuff out:
First of all, are virtualenv and pip supposed to be in a usable state by now? If not, please disregard the rest as the ravings of a madman.
How should virtualenv be installed? I'm not quite ready to believe it's as convoluted as explained elsewhere.
Is there a set of tested instructions for how to install matplotlib in a virtual environment? For some reason it always wants to compile it here instead of just installing a package, and it always ends in failure (even after build-dep which took up 250 MB of disk space). After a whole bunch of warnings it prints src/mplutils.cpp:17: error: ‘vsprintf’ was not declared in this scope.
How does either tool interact with setup.py? pip is supposed to replace easy_install, but it's not clear whether it's a drop-in or more complicated relationship.
Is virtualenv only for development mode, or should the users also install it?
Will the resulting package be installed with the minimum requirements (like the current egg), or will it be installed with sources & binaries for all dependencies plus all the build tools, creating a gigabyte monster in the virtual environment?
Will the users have to modify their $PATH and $PYTHONPATH to run the resulting package if it's installed in a virtual environment?
Do I need to create a script from a text string for virtualenv like in the bad old days?
What is with the #egg=Package URL syntax? That's not part of the standard URL, so why isn't it a separate parameter?
Where is #rev included in the URL? At the end I suppose, but the documentation is not clear about this ("You can also include #rev in the URL").
What is supposed to be understood by using an existing requirements file as "as a sort of template for the new file"? This could mean any number of things.
Wow, that's quite a set of questions. Many of them would really deserve their own SO question with more details. I'll do my best:
First of all, are virtualenv and pip
supposed to be in a usable state by
now?
Yes, although they don't serve everyone's needs. Pip and virtualenv (along with everything else in Python package management) are far from perfect, but they are widely used and depended upon nonetheless.
How should virtualenv be installed?
I'm not quite ready to believe it's as
convoluted as explained elsewhere.
The answer you link is complex because it is trying to avoid making any changes at all to your global Python installation and install everything in ~/.local instead. This has some advantages, but is more complex to setup. It's also installing virtualenvwrapper, which is a set of convenience bash scripts for working with virtualenv, but is not necessary for using virtualenv.
If you are on Ubuntu, aptitude install python-setuptools followed by easy_install virtualenv should get you a working virtualenv installation without doing any damage to your global python environment (unless you also had the Ubuntu virtualenv package installed, which I don't recommend as it will likely be an old version).
Is there a set of tested instructions
for how to install matplotlib in a
virtual environment? For some reason
it always wants to compile it here
instead of just installing a package,
and it always ends in failure (even
after build-dep which took up 250 MB
of disk space). After a whole bunch of
warnings it prints
src/mplutils.cpp:17: error: ‘vsprintf’
was not declared in this scope.
It "always wants to compile" because pip, by design, installs only from source, it doesn't install pre-compiled binaries. This is a controversial choice, and is probably the primary reason why pip has seen widest adoption among Python web developers, who use more pure-Python packages and commonly develop and deploy in POSIX environments where a working compilation chain is standard.
The reason for the design choice is that providing precompiled binaries has a combinatorial explosion problem with different platforms and build architectures (including python version, UCS-2 vs UCS-4 python builds, 32 vs 64-bit...). The way easy_install finds the right binary package on PyPI sort of works, most of the time, but doesn't account for all these factors and can break. So pip just avoids that issue altogether (replacing it with a requirement that you have a working compilation environment).
In many cases, packages that require C compilation also have a slower-moving release schedule and it's acceptable to simply install OS packages for them instead. This doesn't allow working with different versions of them in different virtualenvs, though.
I don't know what's causing your compilation error, it works for me (on Ubuntu 10.10) with this series of commands:
virtualenv --no-site-packages tmp
. tmp/bin/activate
pip install numpy
pip install -f http://downloads.sourceforge.net/project/matplotlib/matplotlib/matplotlib-1.0.1/matplotlib-1.0.1.tar.gz matplotlib
The "-f" link is necessary to get the most recent version, due to matplotlib's unusual download URLs on PyPI.
How does either tool interact with
setup.py? pip is supposed to replace
easy_install, but it's not clear
whether it's a drop-in or more
complicated relationship.
The setup.py file is a convention of distutils, the Python standard library's package management "solution." distutils alone is missing some key features, and setuptools is a widely-used third-party package that "embraces and extends" distutils to provide some additional features. setuptools also uses setup.py. easy_install is the installer bundled with setuptools. Setuptools development stalled for several years, and distribute was a fork of setuptools to fix some longstanding bugs. Eventually the fork was resolved with a merge of distribute back into setuptools, and setuptools development is now active again (with a new maintainer).
distutils2 was a mostly-rewritten new version of distutils that attempted to incorporate the best ideas from setuptools/distribute, and was supposed to become part of the Python standard library. Unfortunately this effort failed, so for the time being setuptools remains the de facto standard for Python packaging.
Pip replaces easy_install, but it does not replace setuptools; it requires setuptools and builds on top of it. Thus it also uses setup.py.
Is virtualenv only for development
mode, or should the users also install
it?
There's no single right answer to that; it can be used either way. In the end it's really your user's choice, and your software ideally should be able to be installed inside or out of a virtualenv; though you might choose to document and emphasize one approach or the other. It depends very much on who your users are and what environments they are likely to need to install your software into.
Will the resulting package be
installed with the minimum
requirements (like the current egg),
or will it be installed with sources &
binaries for all dependencies plus all
the build tools, creating a gigabyte
monster in the virtual environment?
If a package that requires compilation is installed via pip, it will need to be compiled from source. That also applies to any dependencies that require compilation.
This is unrelated to the question of whether you use a virtualenv. easy_install is available by default in a virtualenv and works just fine there. It can install pre-compiled binary eggs, just like it does outside of a virtualenv.
Will the users have to modify their
$PATH and $PYTHONPATH to run the
resulting package if it's installed in
a virtual environment?
In order to use anything installed in a virtualenv, you need to use the python binary in the virtualenv's bin/ directory (or another script installed into the virtualenv that references this binary). The most common way to do this is to use the virtualenv's activate or activate.bat script to temporarily modify the shell PATH so the virtualenv's bin/ directory is first. Modifying PYTHONPATH is not generally useful or necessary with virtualenv.
Do I need to create a script from a
text string for virtualenv like in the
bad old days?
No.
What is with the #egg=Package URL
syntax? That's not part of the
standard URL, so why isn't it a
separate parameter?
The "#egg=projectname-version" URL fragment hack was first introduced by setuptools and easy_install. Since easy_install scrapes links from the web to find candidate distributions to install for a given package name and version, this hack allowed package authors to add links on PyPI that easy_install could understand, even if they didn't use easy_install's standard naming conventions for their files.
Where is #rev included in the URL? At
the end I suppose, but the
documentation is not clear about this
("You can also include #rev in the
URL").
A couple sentences after that quoted fragment there is a link to "read the requirements file format to learn about other features." The #rev feature is fully documented and demonstrated there.
What is supposed to be understood by
using an existing requirements file as
"as a sort of template for the new
file"? This could mean any number of
things.
The very next sentence says "it will keep the packages listed in devel-req.txt in order and preserve comments." I'm not sure what would be a better concise description.
I can't answer all your questions, but hopefully the following helps.
Both virtualenv and pip are very usable. Many Python devs use these everyday.
Since you have a working easy_install, the easiest way to install both is the following:
easy_install pip
easy_install virtualenv
Once you have virtualenv, just type virtualenv yourEnvName and you'll get your new python virtual environment in a directory named yourEnvName.
From there, it's as easy as source yourEnvName/bin/activate and the virtual python interpreter will be your active. I know nothing about matplotlib, but following the installation interactions should work out ok unless there are weird hard-coded path issues.
If you can install something via easy_install you can usually install it via pip. I haven't found anything that easy_install could do that pip couldn't.
I wouldn't count on users being able to install virtualenv (it depends on who your users are). Technically, a virtual python interpreter can be treated as a real one for most cases. It's main use is not cluttering up the real interpreter's site-packages and if you have two libraries/apps that require different and incompatible versions of the same library.
If you or a user install something in a virtualenv, it won't be available in other virtualenvs or the system Python interpreter. You'll need to use source /path/to/yourvirtualenv/bin/activate command to switch to a virtual environment you installed the library on.
What they mean by "as a sort of template for the new file" is that the pip freeze -r devel-req.txt > stable-req.txt command will create a new file stable-req.txt based on the existing file devel-req.txt. The only difference will be anything installed not already specified in the existing file will be in the new file.

Categories