Python namespace packages on Ubuntu 11 with setuptools 0.6c11 - python

Hi fellow Python programmers,
I recently felt the urge to update my operating system, and wiped out the existing Ubuntu 10 install for 11.10. I was already using python 2.7 on the older system. After I set up the prerequisites for our code base, I created a virtual environment, and ran python setup.py develop to install the dependencies for the code base. Everything ran smoothly, but when I tried to start the app, python was unable to import some packages which were successfully installed. These are namespace packages, such as repoze.what.
The weird thing is, I looked at the version of setuptools that we are using on our deployment system, and it is the same as on my machine (0.6c11). I'm at a loss as to where the difference may be, and what is causing the problem.
One thing that I tried is to create the virtual environment using distribute instead of setuptools, but that did not help.
Any help would be highly appreciated, since this is holding me back from doing any serious work.
Cheers, and thanks in advance.

This discussion suggest that you may want to list setuptools explicitly as a dependency for a package that has namespace packages. I found out that my packages (which also have namespaces) install well with pip, but sometimes cannot be imported if installed by easy_install.

Related

How do I resolve #error: architecture not supported during pip install psutil?

I've run into some problems while trying to download packages with pip. Namely, when I run
pip install "dask[complete]"
on MacOS Catalina 10.15.7. Specifically, the package that throws this error is psutil.
I run into an #error: architecture not supported message. I believe this is because the installer is looking for the MacOS 10.14.6 SDKs, but I am on 10.15.7. One user on this post stated that installing a new Python 3 fixed the issue. Maybe this is because the newer Python comes with a cached version of the package that uses the MacOS 10.15.7 SDKs.
I'm guessing that there might be two solutions to this issue:
Download a non-cached version of psutil, which might be compatible with the version of Python I'm using as well as MacOS Catalina.
Download a newer version of Python 3, namely 3.8.5+, and replace the Xcode Python 3 with this version, enabling me to stay up-to-date with current Python and packages.
I'm wary of the second method because of any possible dependencies I will lose while updating, and I've also been made very aware through research that generally speaking, you don't want to mess with system Python installations.
I'm not opposed to being walked through the first solution, if it would indeed solve the problem, but am very curious about the second solution, again, if it is possible. If neither approach would work out as intended, has anyone encountered this issue and resolved it without using a fresh, SEPARATE install of Python? I don't really want to start messing with virtual environments, but if I must, I supposed I will just download PyCharm and restart there.
EDIT: After continuing to try to work around the issue, I've been led to believe that it is not being caused by an outdated version of psutil; could it be an outdated version of setup.py? In this case, would it indeed be an issue with an old Python version? I'm very new to configuring Python in depth like this, any help would be greatly appreciated.
Try setting the environment variable ARCHFLAGS="-arch x86_64" so Xcode 12 doesn't try to build an ARM64 universal binary. It worked for me on a different python package that had the same error.
ARCHFLAGS="-arch x86_64" pip install "dask[complete]"
(Thanks to Keith Smiley's comment at on Bitbucket for pointing this out.)

Yowsup installation missing connectionmanager.py

It seems that I cannot get yowsup properly installed under Windows 7.
I am following these procedures for installation:
https://github.com/tgalal/yowsup/blob/master/README.md
doing a
pip install yowsup2
python setup.py install
I have omitted installation of zlib since I do know where the dll is,
but not in which directory I should copy it.
Everything runs fine when using yowsup-cli, I can send and receive messages.
However, I cannot run samples on signals and methods such as shown:
https://github.com/tgalal/yowsup/wiki/%5BLegacy%5D-Yowsup-Documentation
since I cannot find the file connectionmanager.py, this is not installed or created.
Any help appreciated, thanks!
There are two branches: legacy (yowsup) and master (yowsup2)
Yowsup2 is the newer version with a clean up of the code compared to yowsup(legacy).
What you did is installing yowsup2 but you tried to use functions of the legacy package. (Imagine an old car as legacy without automatic but you trying to use it)
Also Yowsup2 (master) will get updates and that stuff while legacy won't be updated anymore.
If you have any more questions feel free to ask.
It seems that one needs to do an additional
pin install Yowsup
(mind the capital letter, and no trailing '2' here)
to install the legacy package which includes the connectionmanager.py
However, this is installed in the directory yowsup starting with a small 'y', but modules in the scripts are still not found since they refer to a Yowsup directory with capital Y.
Confused.

Remove Old Version of Python Package on Install

I'm creating a Django package that contains some core functionality I will use across multiple web apps.
Now, this is the first time I'm creating a Django/Python package. I have read up on existing documentation and tutorials.
My problem is that, every time I make a change to the package and recreate the package, and reinstall it using the "python setup.py install" method, the new package is in fact installed, but the previous version remains.
So, for example, right now I have the latest 3 versions of the package installed in my machine.
How do I make it so an installation of the package removes all previous installations of the same package?
Thank you
It seems that this is a known problem.
The reporter of Issue 5342 has the same issue with old files persisting in the install directory.
Per Issue 4673, distutils2 now has an uninstall command that you could use to clean your directory on an install. Perhaps you could override the install command such that it first tries to uninstall an old package first?
Otherwise, it seems the solution is:
to hack some old file detection into each package, or tell users 'delete
the old install first'. Neither of which is really nice.

Migrating to pip+virtualenv from setuptools

So pip and virtualenv sound wonderful compared to setuptools. Being able to uninstall would be great. But my project is already using setuptools, so how do I migrate? The web sites I've been able to find so far are very vague and general. So here's an anthology of questions after reading the main web sites and trying stuff out:
First of all, are virtualenv and pip supposed to be in a usable state by now? If not, please disregard the rest as the ravings of a madman.
How should virtualenv be installed? I'm not quite ready to believe it's as convoluted as explained elsewhere.
Is there a set of tested instructions for how to install matplotlib in a virtual environment? For some reason it always wants to compile it here instead of just installing a package, and it always ends in failure (even after build-dep which took up 250 MB of disk space). After a whole bunch of warnings it prints src/mplutils.cpp:17: error: ‘vsprintf’ was not declared in this scope.
How does either tool interact with setup.py? pip is supposed to replace easy_install, but it's not clear whether it's a drop-in or more complicated relationship.
Is virtualenv only for development mode, or should the users also install it?
Will the resulting package be installed with the minimum requirements (like the current egg), or will it be installed with sources & binaries for all dependencies plus all the build tools, creating a gigabyte monster in the virtual environment?
Will the users have to modify their $PATH and $PYTHONPATH to run the resulting package if it's installed in a virtual environment?
Do I need to create a script from a text string for virtualenv like in the bad old days?
What is with the #egg=Package URL syntax? That's not part of the standard URL, so why isn't it a separate parameter?
Where is #rev included in the URL? At the end I suppose, but the documentation is not clear about this ("You can also include #rev in the URL").
What is supposed to be understood by using an existing requirements file as "as a sort of template for the new file"? This could mean any number of things.
Wow, that's quite a set of questions. Many of them would really deserve their own SO question with more details. I'll do my best:
First of all, are virtualenv and pip
supposed to be in a usable state by
now?
Yes, although they don't serve everyone's needs. Pip and virtualenv (along with everything else in Python package management) are far from perfect, but they are widely used and depended upon nonetheless.
How should virtualenv be installed?
I'm not quite ready to believe it's as
convoluted as explained elsewhere.
The answer you link is complex because it is trying to avoid making any changes at all to your global Python installation and install everything in ~/.local instead. This has some advantages, but is more complex to setup. It's also installing virtualenvwrapper, which is a set of convenience bash scripts for working with virtualenv, but is not necessary for using virtualenv.
If you are on Ubuntu, aptitude install python-setuptools followed by easy_install virtualenv should get you a working virtualenv installation without doing any damage to your global python environment (unless you also had the Ubuntu virtualenv package installed, which I don't recommend as it will likely be an old version).
Is there a set of tested instructions
for how to install matplotlib in a
virtual environment? For some reason
it always wants to compile it here
instead of just installing a package,
and it always ends in failure (even
after build-dep which took up 250 MB
of disk space). After a whole bunch of
warnings it prints
src/mplutils.cpp:17: error: ‘vsprintf’
was not declared in this scope.
It "always wants to compile" because pip, by design, installs only from source, it doesn't install pre-compiled binaries. This is a controversial choice, and is probably the primary reason why pip has seen widest adoption among Python web developers, who use more pure-Python packages and commonly develop and deploy in POSIX environments where a working compilation chain is standard.
The reason for the design choice is that providing precompiled binaries has a combinatorial explosion problem with different platforms and build architectures (including python version, UCS-2 vs UCS-4 python builds, 32 vs 64-bit...). The way easy_install finds the right binary package on PyPI sort of works, most of the time, but doesn't account for all these factors and can break. So pip just avoids that issue altogether (replacing it with a requirement that you have a working compilation environment).
In many cases, packages that require C compilation also have a slower-moving release schedule and it's acceptable to simply install OS packages for them instead. This doesn't allow working with different versions of them in different virtualenvs, though.
I don't know what's causing your compilation error, it works for me (on Ubuntu 10.10) with this series of commands:
virtualenv --no-site-packages tmp
. tmp/bin/activate
pip install numpy
pip install -f http://downloads.sourceforge.net/project/matplotlib/matplotlib/matplotlib-1.0.1/matplotlib-1.0.1.tar.gz matplotlib
The "-f" link is necessary to get the most recent version, due to matplotlib's unusual download URLs on PyPI.
How does either tool interact with
setup.py? pip is supposed to replace
easy_install, but it's not clear
whether it's a drop-in or more
complicated relationship.
The setup.py file is a convention of distutils, the Python standard library's package management "solution." distutils alone is missing some key features, and setuptools is a widely-used third-party package that "embraces and extends" distutils to provide some additional features. setuptools also uses setup.py. easy_install is the installer bundled with setuptools. Setuptools development stalled for several years, and distribute was a fork of setuptools to fix some longstanding bugs. Eventually the fork was resolved with a merge of distribute back into setuptools, and setuptools development is now active again (with a new maintainer).
distutils2 was a mostly-rewritten new version of distutils that attempted to incorporate the best ideas from setuptools/distribute, and was supposed to become part of the Python standard library. Unfortunately this effort failed, so for the time being setuptools remains the de facto standard for Python packaging.
Pip replaces easy_install, but it does not replace setuptools; it requires setuptools and builds on top of it. Thus it also uses setup.py.
Is virtualenv only for development
mode, or should the users also install
it?
There's no single right answer to that; it can be used either way. In the end it's really your user's choice, and your software ideally should be able to be installed inside or out of a virtualenv; though you might choose to document and emphasize one approach or the other. It depends very much on who your users are and what environments they are likely to need to install your software into.
Will the resulting package be
installed with the minimum
requirements (like the current egg),
or will it be installed with sources &
binaries for all dependencies plus all
the build tools, creating a gigabyte
monster in the virtual environment?
If a package that requires compilation is installed via pip, it will need to be compiled from source. That also applies to any dependencies that require compilation.
This is unrelated to the question of whether you use a virtualenv. easy_install is available by default in a virtualenv and works just fine there. It can install pre-compiled binary eggs, just like it does outside of a virtualenv.
Will the users have to modify their
$PATH and $PYTHONPATH to run the
resulting package if it's installed in
a virtual environment?
In order to use anything installed in a virtualenv, you need to use the python binary in the virtualenv's bin/ directory (or another script installed into the virtualenv that references this binary). The most common way to do this is to use the virtualenv's activate or activate.bat script to temporarily modify the shell PATH so the virtualenv's bin/ directory is first. Modifying PYTHONPATH is not generally useful or necessary with virtualenv.
Do I need to create a script from a
text string for virtualenv like in the
bad old days?
No.
What is with the #egg=Package URL
syntax? That's not part of the
standard URL, so why isn't it a
separate parameter?
The "#egg=projectname-version" URL fragment hack was first introduced by setuptools and easy_install. Since easy_install scrapes links from the web to find candidate distributions to install for a given package name and version, this hack allowed package authors to add links on PyPI that easy_install could understand, even if they didn't use easy_install's standard naming conventions for their files.
Where is #rev included in the URL? At
the end I suppose, but the
documentation is not clear about this
("You can also include #rev in the
URL").
A couple sentences after that quoted fragment there is a link to "read the requirements file format to learn about other features." The #rev feature is fully documented and demonstrated there.
What is supposed to be understood by
using an existing requirements file as
"as a sort of template for the new
file"? This could mean any number of
things.
The very next sentence says "it will keep the packages listed in devel-req.txt in order and preserve comments." I'm not sure what would be a better concise description.
I can't answer all your questions, but hopefully the following helps.
Both virtualenv and pip are very usable. Many Python devs use these everyday.
Since you have a working easy_install, the easiest way to install both is the following:
easy_install pip
easy_install virtualenv
Once you have virtualenv, just type virtualenv yourEnvName and you'll get your new python virtual environment in a directory named yourEnvName.
From there, it's as easy as source yourEnvName/bin/activate and the virtual python interpreter will be your active. I know nothing about matplotlib, but following the installation interactions should work out ok unless there are weird hard-coded path issues.
If you can install something via easy_install you can usually install it via pip. I haven't found anything that easy_install could do that pip couldn't.
I wouldn't count on users being able to install virtualenv (it depends on who your users are). Technically, a virtual python interpreter can be treated as a real one for most cases. It's main use is not cluttering up the real interpreter's site-packages and if you have two libraries/apps that require different and incompatible versions of the same library.
If you or a user install something in a virtualenv, it won't be available in other virtualenvs or the system Python interpreter. You'll need to use source /path/to/yourvirtualenv/bin/activate command to switch to a virtual environment you installed the library on.
What they mean by "as a sort of template for the new file" is that the pip freeze -r devel-req.txt > stable-req.txt command will create a new file stable-req.txt based on the existing file devel-req.txt. The only difference will be anything installed not already specified in the existing file will be in the new file.

Does Python have a package/module management system?

Does Python have a package/module management system, similar to how Ruby has rubygems where you can do gem install packagename?
On Installing Python Modules, I only see references to python setup.py install, but that requires you to find the package first.
Recent progress
March 2014: Good news! Python 3.4 ships with Pip. Pip has long been Python's de-facto standard package manager. You can install a package like this:
pip install httpie
Wahey! This is the best feature of any Python release. It makes the community's wealth of libraries accessible to everyone. Newbies are no longer excluded from using community libraries by the prohibitive difficulty of setup.
However, there remains a number of outstanding frustrations with the Python packaging experience. Cumulatively, they make Python very unwelcoming for newbies. Also, the long history of neglect (ie. not shipping with a package manager for 14 years from Python 2.0 to Python 3.3) did damage to the community. I describe both below.
Outstanding frustrations
It's important to understand that while experienced users are able to work around these frustrations, they are significant barriers to people new to Python. In fact, the difficulty and general user-unfriendliness is likely to deter many of them.
PyPI website is counter-helpful
Every language with a package manager has an official (or quasi-official) repository for the community to download and publish packages. Python has the Python Package Index, PyPI. https://pypi.python.org/pypi
Let's compare its pages with those of RubyGems and Npm (the Node package manager).
https://rubygems.org/gems/rails RubyGems page for the package rails
https://www.npmjs.org/package/express Npm page for the package express
https://pypi.python.org/pypi/simplejson/ PyPI page for the package simplejson
You'll see the RubyGems and Npm pages both begin with a one-line description of the package, then large friendly instructions how to install it.
Meanwhile, woe to any hapless Python user who naively browses to PyPI. On https://pypi.python.org/pypi/simplejson/ , they'll find no such helpful instructions. There is however, a large green 'Download' link. It's not unreasonable to follow it. Aha, they click! Their browser downloads a .tar.gz file. Many Windows users can't even open it, but if they persevere they may eventually extract it, then run setup.py and eventually with the help of Google setup.py install. Some will give up and reinvent the wheel..
Of course, all of this is wrong. The easiest way to install a package is with a Pip command. But PyPI didn't even mention Pip. Instead, it led them down an archaic and tedious path.
Error: Unable to find vcvarsall.bat
Numpy is one of Python's most popular libraries. Try to install it with Pip, you get this cryptic error message:
Error: Unable to find vcvarsall.bat
Trying to fix that is one of the most popular questions on Stack Overflow: "error: Unable to find vcvarsall.bat"
Few people succeed.
For comparison, in the same situation, Ruby prints this message, which explains what's going on and how to fix it:
Please update your PATH to include build tools or download the DevKit from http://rubyinstaller.org/downloads and follow the instructions at http://github.com/oneclick/rubyinstaller/wiki/Development-Kit
Publishing packages is hard
Ruby and Nodejs ship with full-featured package managers, Gem (since 2007) and Npm (since 2011), and have nurtured sharing communities centred around GitHub. Npm makes publishing packages as easy as installing them, it already has 64k packages. RubyGems lists 72k packages. The venerable Python package index lists only 41k.
History
Flying in the face of its "batteries included" motto, Python shipped without a package manager until 2014.
Until Pip, the de facto standard was a command easy_install. It was woefully inadequate. The was no command to uninstall packages.
Pip was a massive improvement. It had most the features of Ruby's Gem. Unfortunately, Pip was--until recently--ironically difficult to install. In fact, the problem remains a top Python question on Stack Overflow: "How do I install pip on Windows?"
And just to provide a contrast, there's also pip.
The Python Package Index (PyPI) seems to be standard:
To install a package:
pip install MyProject
To update a package
pip install --upgrade MyProject
To fix a version of a package pip install MyProject==1.0
You can install the package manager as follows:
curl -O http://python-distribute.org/distribute_setup.py
python distribute_setup.py
easy_install pip
References:
http://guide.python-distribute.org/
http://pypi.python.org/pypi/distribute
As a Ruby and Perl developer and learning-Python guy, I haven't found easy_install or pip to be the equivalent to RubyGems or CPAN.
I tend to keep my development systems running the latest versions of modules as the developers update them, and freeze my production systems at set versions. Both RubyGems and CPAN make it easy to find modules by listing what's available, then install and later update them individually or in bulk if desired.
easy_install and pip make it easy to install a module ONCE I located it via a browser search or learned about it by some other means, but they won't tell me what is available. I can explicitly name the module to be updated, but the apps won't tell me what has been updated nor will they update everything in bulk if I want.
So, the basic functionality is there in pip and easy_install but there are features missing that I'd like to see that would make them friendlier and easier to use and on par with CPAN and RubyGems.
There are at least two, easy_install and its successor pip.
As of at least late 2014, Continuum Analytics' Anaconda Python distribution with the conda package manager should be considered. It solves most of the serious issues people run into with Python in general (managing different Python versions, updating Python versions, package management, virtual environments, Windows/Mac compatibility) in one cohesive download.
It enables you to do pretty much everything you could want to with Python without having to change the system at all. My next preferred solution is pip + virtualenv, but you either have to install virtualenv into your system Python (and your system Python may not be the version you want), or build from source. Anaconda makes this whole process the click of a button, as well as adding a bunch of other features.
That'd be easy_install.
It's called setuptools. You run it with the "easy_install" command.
You can find the directory at http://pypi.python.org/
I don't see either MacPorts or Homebrew mentioned in other answers here, but since I do see them mentioned elsewhere on Stack Overflow for related questions, I'll add my own US$0.02 that many folks seem to consider MacPorts as not only a package manager for packages in general (as of today they list 16311 packages/ports, 2931 matching "python", albeit only for Macs), but also as a decent (maybe better) package manager for Python packages/modules:
Question
"...what is the method that Mac python developers use to manage their modules?"
Answers
"MacPorts is perfect for Python on the Mac."
"The best way is to use MacPorts."
"I prefer MacPorts..."
"With my MacPorts setup..."
"I use MacPorts to install ... third-party modules tracked by MacPorts"
SciPy
"Macs (unlike Linux) don’t come with a package manager, but there are a couple of popular package managers you can install.
Macports..."
I'm still debating on whether or not to use MacPorts myself, but at the moment I'm leaning in that direction.
On Windows install http://chocolatey.org/ then
choco install python
Open a new cmd-window with the updated PATH. Next, do
choco install pip
After that you can
pip install pyside
pip install ipython
...
Since no one has mentioned pipenv here, I would like to describe my views why everyone should use it for managing python packages.
As #ColonelPanic mentioned there are several issues with the Python Package Index and with pip and virtualenv also.
Pipenv solves most of the issues with pip and provides additional features also.
Pipenv features
Pipenv is intended to replace pip and virtualenv, which means pipenv will automatically create a separate virtual environment for every project thus avoiding conflicts between different python versions/package versions for different projects.
Enables truly deterministic builds, while easily specifying only what you want.
Generates and checks file hashes for locked dependencies.
Automatically install required Pythons, if pyenv is available.
Automatically finds your project home, recursively, by looking for a Pipfile.
Automatically generates a Pipfile, if one doesn’t exist.
Automatically creates a virtualenv in a standard location.
Automatically adds/removes packages to a Pipfile when they are un/installed.
Automatically loads .env files, if they exist.
If you have worked on python projects before, you would realize these features make managing packages way easier.
Other Commands
check checks for security vulnerabilities and asserts that PEP 508 requirements are being met by the current environment. (which I think is a great feature especially after this - Malicious packages on PyPi)
graph will show you a dependency graph, of your installed dependencies.
You can read more about it here - Pipenv.
Installation
You can find the installation documentation here
P.S.: If you liked working with the Python Package requests , you would be pleased to know that pipenv is by the same developer Kenneth Reitz
In 2019 poetry is the package and dependency manager you are looking for.
https://github.com/sdispater/poetry#why
It's modern, simple and reliable.
Poetry is what you're looking for. It takes care of dependency management, virtual environments, running.

Categories