I'm trying to profile a few lines of Pandas code, and when I run %prun i'm finding most of my time is taken by {isinstance}. This seems to happen a lot -- can anyone suggest what that means and, for bonus points, suggest a way to avoid it?
This isn't meant to be application specific, but here's a thinned out version of the code if that's important:
def flagOtherGroup(df):
try:mostUsed0 = df[df.subGroupDummy == 0].siteid.iloc[0]
except: mostUsed0 = -1
try: mostUsed1 = df[df.subGroupDummy == 1].siteid.iloc[0]
except: mostUsed1 = -1
df['mostUsed'] = 0
df.loc[(df.subGroupDummy == 0) & (df.siteid == mostUsed1), 'mostUsed'] = 1
df.loc[(df.subGroupDummy == 1) & (df.siteid == mostUsed0), 'mostUsed'] = 1
return df[['mostUsed']]
%prun -l15 temp = test.groupby('userCode').apply(flagOtherGroup)
And top lines of prun:
Ordered by: internal time
List reduced from 531 to 15 due to restriction <15>
ncalls tottime percall cumtime percall filename:lineno(function)
834472 1.908 0.000 2.280 0.000 {isinstance}
497048/395400 1.192 0.000 1.572 0.000 {len}
32722 0.879 0.000 4.479 0.000 series.py:114(__init__)
34444 0.613 0.000 1.792 0.000 internals.py:3286(__init__)
25990 0.568 0.000 0.568 0.000 {method 'reduce' of 'numpy.ufunc' objects}
82266/78821 0.549 0.000 0.744 0.000 {numpy.core.multiarray.array}
42201 0.544 0.000 1.195 0.000 internals.py:62(__init__)
42201 0.485 0.000 1.812 0.000 internals.py:2015(make_block)
166244 0.476 0.000 0.615 0.000 {getattr}
4310 0.455 0.000 1.121 0.000 internals.py:2217(_rebuild_blknos_and_blklocs)
12054 0.417 0.000 2.134 0.000 internals.py:2355(apply)
9474 0.385 0.000 1.284 0.000 common.py:727(take_nd)
isinstance, len and getattr are just the built-in functions. There are a huge number of calls to the isinstance() function here; it is not that the call itself takes a lot of time, but the function was used 834472 times.
Presumably it is the pandas code that uses it.
Related
I have some Python code that is generating a large data set via numerical simulation. The code is using Numpy for a lot of the calculations and Pandas for a lot of the top-level data. The data sets are large so the code is running slowly, and now I'm trying to see if I can use cProfile to find and fix some hot spots.
The trouble is that cProfile is identifying a lot of the hot spots as pieces of code within Pandas, within Numpy, and/or Python builtins. Here are the cProfile statistics sorted by 'tottime' (total time within the function itself). Note that I'm obscuring project name and file names since the code itself is not owned by me and I don't have permission to share details.
foo.sort_stats('tottime').print_stats(50)
Wed Jun 5 13:18:28 2019 c:\localwork\xxxxxx\profile_data
297514385 function calls (291105230 primitive calls) in 306.898 seconds
Ordered by: internal time
List reduced from 4141 to 50 due to restriction <50>
ncalls tottime percall cumtime percall filename:lineno(function)
281307 31.918 0.000 34.731 0.000 {pandas._libs.lib.infer_dtype}
800 31.443 0.039 31.476 0.039 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\numpy\lib\function_base.py:4703(delete)
109668 23.837 0.000 23.837 0.000 {method 'clear' of 'dict' objects}
153481 19.369 0.000 19.369 0.000 {method 'ravel' of 'numpy.ndarray' objects}
5861614 14.182 0.000 78.492 0.000 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\indexes\base.py:3090(get_value)
5861614 8.891 0.000 8.891 0.000 {method 'get_value' of 'pandas._libs.index.IndexEngine' objects}
5861614 8.376 0.000 99.084 0.000 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\series.py:764(__getitem__)
26840695 7.032 0.000 11.009 0.000 {built-in method builtins.isinstance}
26489324 6.547 0.000 14.410 0.000 {built-in method builtins.getattr}
11846279 6.177 0.000 19.809 0.000 {pandas._libs.lib.values_from_object}
[...]
Is there a sensible way for me to figure out which parts of my code are excessively leaning on these library functions and built-ins? I anticipate one answer would be "look at the cumulative time statistics, that will probably indicate where these costly calls are originating". The cumulative times give a little bit of insight:
foo.sort_stats('cumulative').print_stats(50)
Wed Jun 5 13:18:28 2019 c:\localwork\xxxxxx\profile_data
297514385 function calls (291105230 primitive calls) in 306.898 seconds
Ordered by: cumulative time
List reduced from 4141 to 50 due to restriction <50>
ncalls tottime percall cumtime percall filename:lineno(function)
643/1 0.007 0.000 307.043 307.043 {built-in method builtins.exec}
1 0.000 0.000 307.043 307.043 xxxxxx.py:1(<module>)
1 0.002 0.002 306.014 306.014 xxxxxx.py:264(write_xxx_data)
1 0.187 0.187 305.991 305.991 xxxxxx.py:256(write_yyyy_data)
1 0.077 0.077 305.797 305.797 xxxxxx.py:250(make_zzzzzzz)
1 0.108 0.108 187.845 187.845 xxxxxx.py:224(generate_xyzxyz)
108223 1.977 0.000 142.816 0.001 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\indexing.py:298(_setitem_with_indexer)
1 0.799 0.799 126.733 126.733 xxxxxx.py:63(populate_abcabc_data)
1 0.030 0.030 117.874 117.874 xxxxxx.py:253(<listcomp>)
7201 0.077 0.000 116.612 0.016 C:\LocalWork\xxxxxx\yyyyyyyyyyyy.py:234(xxx_yyyyyy)
108021 0.497 0.000 112.908 0.001 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\indexing.py:182(__setitem__)
5861614 8.376 0.000 99.084 0.000 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\series.py:764(__getitem__)
110024 0.917 0.000 81.210 0.001 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\internals.py:3500(apply)
108021 0.185 0.000 80.685 0.001 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\internals.py:3692(setitem)
5861614 14.182 0.000 78.492 0.000 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\indexes\base.py:3090(get_value)
108021 1.887 0.000 73.064 0.001 C:\LocalWork\WPy-3710\python-3.7.1.amd64\lib\site-packages\pandas\core\internals.py:819(setitem)
[...]
Is there a good way to pin down the hot spots -- better than "crawl through xxxxxx.py and search for all places where Pandas might be inferring a dataype, and where Numpy might be deleting objects"...?
Using numpy.reshape helped a lot and using map helped a little. Is it possible to speed this up some more?
import pydicom
import numpy as np
import cProfile
import pstats
def parse_coords(contour):
"""Given a contour from a DICOM ROIContourSequence, returns coordinates
[loop][[x0, x1, x2, ...][y0, y1, y2, ...][z0, z1, z2, ...]]"""
if not hasattr(contour, "ContourSequence"):
return [] # empty structure
def _reshape_contour_data(loop):
return np.reshape(np.array(loop.ContourData),
(3, len(loop.ContourData) // 3),
order='F')
return list(map(_reshape_contour_data,contour.ContourSequence))
def profile_load_contours():
rs = pydicom.dcmread('RS.gyn1.dcm')
structs = [parse_coords(contour) for contour in rs.ROIContourSequence]
cProfile.run('profile_load_contours()','prof.stats')
p = pstats.Stats('prof.stats')
p.sort_stats('cumulative').print_stats(30)
Using a real structure set exported from Varian Eclipse.
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 12.165 12.165 {built-in method builtins.exec}
1 0.151 0.151 12.165 12.165 <string>:1(<module>)
1 0.000 0.000 12.014 12.014 load_contour_time.py:19(profile_load_contours)
1 0.000 0.000 11.983 11.983 load_contour_time.py:21(<listcomp>)
56 0.009 0.000 11.983 0.214 load_contour_time.py:7(parse_coords)
50745/33837 0.129 0.000 11.422 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/dataset.py:455(__getattr__)
50741/33825 0.152 0.000 10.938 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/dataset.py:496(__getitem__)
16864 0.069 0.000 9.839 0.001 load_contour_time.py:12(_reshape_contour_data)
16915 0.101 0.000 9.780 0.001 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/dataelem.py:439(DataElement_from_raw)
16915 0.052 0.000 9.300 0.001 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/values.py:320(convert_value)
16864 0.038 0.000 7.099 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/values.py:89(convert_DS_string)
16870 0.042 0.000 7.010 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/valuerep.py:495(MultiString)
16908 1.013 0.000 6.826 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/multival.py:29(__init__)
3004437 3.013 0.000 5.577 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/multival.py:42(number_string_type_constructor)
3038317/3038231 1.037 0.000 3.171 0.000 {built-in method builtins.hasattr}
Much of the time is in convert_DS_string. Is it possible to make it faster? I guess part of the problem is that the coordinates are not stored very efficiently in the DICOM file.
EDIT:
As a way of avoiding the loop at the end of MultiVal.__init__ I am wondering about getting the raw double string of each ContourData and using numpy.fromstring on it. However, I have not been able to get the raw double string.
Eliminating the loop in MultiVal.__init__ and using numpy.fromstring provides more than 4 times speedup. I will post on the pydicom github see if there is some interest in taking this into the library code. It is a little ugly. I would welcome advice on further improvement.
import pydicom
import numpy as np
import cProfile
import pstats
def parse_coords(contour):
"""Given a contour from a DICOM ROIContourSequence, returns coordinates
[loop][[x0, x1, x2, ...][y0, y1, y2, ...][z0, z1, z2, ...]]"""
if not hasattr(contour, "ContourSequence"):
return [] # empty structure
cd_tag = pydicom.tag.Tag(0x3006, 0x0050) # ContourData tag
def _reshape_contour_data(loop):
val = super(loop.__class__, loop).__getitem__(cd_tag).value
try:
double_string = val.decode(encoding='utf-8')
double_vec = np.fromstring(double_string, dtype=float, sep=chr(92)) # 92 is '/'
except AttributeError: # 'MultiValue' has no 'decode' (bytes does)
# It's already been converted to doubles and cached
double_vec = loop.ContourData
return np.reshape(np.array(double_vec),
(3, len(double_vec) // 3),
order='F')
return list(map(_reshape_contour_data, contour.ContourSequence))
def profile_load_contours():
rs = pydicom.dcmread('RS.gyn1.dcm')
structs = [parse_coords(contour) for contour in rs.ROIContourSequence]
profile_load_contours()
cProfile.run('profile_load_contours()','prof.stats')
p = pstats.Stats('prof.stats')
p.sort_stats('cumulative').print_stats(15)
Result
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 2.800 2.800 {built-in method builtins.exec}
1 0.017 0.017 2.800 2.800 <string>:1(<module>)
1 0.000 0.000 2.783 2.783 load_contour_time3.py:29(profile_load_contours)
1 0.000 0.000 2.761 2.761 load_contour_time3.py:31(<listcomp>)
56 0.006 0.000 2.760 0.049 load_contour_time3.py:9(parse_coords)
153/109 0.001 0.000 2.184 0.020 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/dataset.py:455(__getattr__)
149/97 0.001 0.000 2.182 0.022 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/dataset.py:496(__getitem__)
51 0.000 0.000 2.178 0.043 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/dataelem.py:439(DataElement_from_raw)
51 0.000 0.000 2.177 0.043 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/values.py:320(convert_value)
44 0.000 0.000 2.176 0.049 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/values.py:255(convert_SQ)
44 0.035 0.001 2.176 0.049 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/filereader.py:427(read_sequence)
152/66 0.000 0.000 2.171 0.033 {built-in method builtins.hasattr}
16920 0.147 0.000 1.993 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/filereader.py:452(read_sequence_item)
16923 0.116 0.000 1.267 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/filereader.py:365(read_dataset)
84616 0.113 0.000 0.699 0.000 /home/cf/python/venv/lib/python3.5/site-packages/pydicom/dataset.py:960(__setattr__)
I have a script that finds the sum of all numbers that can be written as the sum of fifth powers of their digits. (This problem is described in more detail on the Project Euler web site.)
I have written it two ways, but I do not understand the performance difference.
The first way uses nested list comprehensions:
exp = 5
def min_combo(n):
return ''.join(sorted(list(str(n))))
def fifth_power(n, exp):
return sum([int(x) ** exp for x in list(n)])
print sum( [fifth_power(j,exp) for j in set([min_combo(i) for i in range(101,1000000) ]) if int(j) > 10 and j == min_combo(fifth_power(j,exp)) ] )
and profiles like this:
$ python -m cProfile euler30.py
443839
3039223 function calls in 2.040 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1007801 1.086 0.000 1.721 0.000 euler30.py:10(min_combo)
7908 0.024 0.000 0.026 0.000 euler30.py:14(fifth_power)
1 0.279 0.279 2.040 2.040 euler30.py:6(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1007801 0.175 0.000 0.175 0.000 {method 'join' of 'str' objects}
1 0.013 0.013 0.013 0.013 {range}
1007801 0.461 0.000 0.461 0.000 {sorted}
7909 0.002 0.000 0.002 0.000 {sum}
The second way is the more usual for loop:
exp = 5
ans= 0
def min_combo(n):
return ''.join(sorted(list(str(n))))
def fifth_power(n, exp):
return sum([int(x) ** exp for x in list(n)])
for j in set([ ''.join(sorted(list(str(i)))) for i in range(100, 1000000) ]):
if int(j) > 10:
if j == min_combo(fifth_power(j,exp)):
ans += fifth_power(j,exp)
print 'answer', ans
Here is the profiling info again:
$ python -m cProfile euler30.py
answer 443839
2039325 function calls in 1.709 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
7908 0.024 0.000 0.026 0.000 euler30.py:13(fifth_power)
1 1.081 1.081 1.709 1.709 euler30.py:6(<module>)
7902 0.009 0.000 0.015 0.000 euler30.py:9(min_combo)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1007802 0.147 0.000 0.147 0.000 {method 'join' of 'str' objects}
1 0.013 0.013 0.013 0.013 {range}
1007802 0.433 0.000 0.433 0.000 {sorted}
7908 0.002 0.000 0.002 0.000 {sum}
Why does the list comprehension implementation call min_combo() 1,000,000 more times than the for loop implementation?
Because on the second one you implemented again the content of min_combo inside the set call...
Do the same thing and you'll have the same result.
BTW, change those to avoid big lists being created:
sum([something for foo in bar]) -> sum(something for foo in bar)
set([something for foo in bar]) -> set(something for foo in bar)
(without [...] they become generator expressions).
Based on that answer here are two versions of merge function used for mergesort.
Could you help me to understand why the second one is much faster.
I have tested it for list of 50000 and the second one is 8 times faster (Gist).
def merge1(left, right):
i = j = inv = 0
merged = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
merged.append(left[i])
i += 1
else:
merged.append(right[j])
j += 1
inv += len(left[i:])
merged += left[i:]
merged += right[j:]
return merged, inv
.
def merge2(array1, array2):
inv = 0
merged_array = []
while array1 or array2:
if not array1:
merged_array.append(array2.pop())
elif (not array2) or array1[-1] > array2[-1]:
merged_array.append(array1.pop())
inv += len(array2)
else:
merged_array.append(array2.pop())
merged_array.reverse()
return merged_array, inv
Here is the sort function:
def _merge_sort(list, merge):
len_list = len(list)
if len_list < 2:
return list, 0
middle = len_list / 2
left, left_inv = _merge_sort(list[:middle], merge)
right, right_inv = _merge_sort(list[middle:], merge)
l, merge_inv = merge(left, right)
inv = left_inv + right_inv + merge_inv
return l, inv
.
import numpy.random as nprnd
test_list = nprnd.randint(1000, size=50000).tolist()
test_list_tmp = list(test_list)
merge_sort(test_list_tmp, merge1)
test_list_tmp = list(test_list)
merge_sort(test_list_tmp, merge2)
Similar answer as kreativitea's above, but with more info (i think!)
So profiling the actual merge functions, for the merging of two 50K arrays,
merge 1
311748 function calls in 15.363 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 15.363 15.363 <string>:1(<module>)
1 15.322 15.322 15.362 15.362 merge.py:3(merge1)
221309 0.030 0.000 0.030 0.000 {len}
90436 0.010 0.000 0.010 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
merge2
250004 function calls in 0.104 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 0.104 0.104 <string>:1(<module>)
1 0.074 0.074 0.103 0.103 merge.py:20(merge2)
50000 0.005 0.000 0.005 0.000 {len}
100000 0.010 0.000 0.010 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
100000 0.014 0.000 0.014 0.000 {method 'pop' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'reverse' of 'list' objects}
So for merge1, it's 221309 len, 90436 append, and takes 15.363 seconds.
So for merge2, it's 50000 len, 100000 append, and 100000 pop and takes 0.104 seconds.
len and append pop are all O(1) (more info here), so these profiles aren't showing what's actually taking the time, since going of just that, it should be faster, but only ~20% so.
Okay the cause is actually fairly obvious if you just read the code:
In the first method, there is this line:
inv += len(left[i:])
so every time that is called, it has to rebuild an array. If you comment out this line (or just replace it with inv += 1 or something) then it becomes faster than the other method. This is the single line responsible for the increased time.
Having noticed this is the cause, the issue can be fixed by improving the code; change it to this for a speed up. After doing this, it will be faster than merge2
inv += len(left) - i
Update it to this:
def merge3(left, right):
i = j = inv = 0
merged = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
merged.append(left[i])
i += 1
else:
merged.append(right[j])
j += 1
inv += len(left) - i
merged += left[i:]
merged += right[j:]
return merged, inv
You can use the excellent cProfile module to help you solve things like this.
>>> import cProfile
>>> a = range(1,20000,2)
>>> b = range(0,20000,2)
>>> cProfile.run('merge1(a, b)')
70002 function calls in 0.195 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.184 0.184 0.195 0.195 <pyshell#7>:1(merge1)
1 0.000 0.000 0.195 0.195 <string>:1(<module>)
50000 0.008 0.000 0.008 0.000 {len}
19999 0.003 0.000 0.003 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
>>> cProfile.run('merge2(a, b)')
50004 function calls in 0.026 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.016 0.016 0.026 0.026 <pyshell#12>:1(merge2)
1 0.000 0.000 0.026 0.026 <string>:1(<module>)
10000 0.002 0.000 0.002 0.000 {len}
20000 0.003 0.000 0.003 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
20000 0.005 0.000 0.005 0.000 {method 'pop' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'reverse' of 'list' objects}
After looking at the information a bit, it looks like the commenters are correct-- its not the len function-- it's the string module. The string module is invoked when you compare the length of things, as follows:
>>> cProfile.run('0 < len(c)')
3 function calls in 0.000 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {len}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
It is also invoked when slicing a list, but this is a very quick operation.
>>> len(c)
20000000
>>> cProfile.run('c[3:2000000]')
2 function calls in 0.011 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.011 0.011 0.011 0.011 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
TL;DR: Something in the string module is taking 0.195s in your first function, and 0.026s in your second function. : apparently, the rebuilding of the array in inv += len(left[i:]) this line.
If I had to guess, I would say it probably has to do with the cost of removing elements from a list, removing from the end (pop) is quicker than removing from the beginning. the second favors removing elements from the end of the list.
See Performance Notes: http://effbot.org/zone/python-list.htm
"The time needed to remove an item is about the same as the time needed to insert an item at the same location; removing items at the end is fast, removing items at the beginning is slow."
I'm trying to profile a function that calls other functions. I call the profiler as follows:
from mymodule import foo
def start():
# ...
foo()
import cProfile as profile
profile.run('start()', output_file)
p = pstats.Stats(output_file)
print "name: "
print p.sort_stats('name')
print "all stats: "
p.print_stats()
print "cumulative (top 10): "
p.sort_stats('cumulative').print_stats(10)
I find that the profiler says all the time was spend in function "foo()" of mymodule, instead of brekaing it down into the subfunctions foo() calls, which is what I want to see. How can I make the profiler report the performance of these functions?
thanks.
You need p.print_callees() to get hierarchical breakdown of method calls. The output is quite self explanatory: On the left column you can find your function of interest e.g.foo(), then going to the right side column shows all called sub-functions and their scoped total and cumulative times. Breakdowns for these sub-calls are also included etc.
First, I want to say that I was unable to replicate the Asker's issue. The profiler (in py2.7) definitely descends into the called functions and methods. (The docs for py3.6 look identical, but I haven't tested on py3.) My guess is that by limiting it to the top 10 returns, sorted by cumulative time, the first N of those were very high-level functions called a minimum of time, and the functions called by foo() dropped off the bottom of the list.
I decided to play with some big numbers for testing. Here's my test code:
# file: mymodule.py
import math
def foo(n = 5):
for i in xrange(1,n):
baz(i)
bar(i ** i)
def bar(n):
for i in xrange(1,n):
e = exp200(i)
print "len e: ", len("{}".format(e))
def exp200(n):
result = 1
for i in xrange(200):
result *= n
return result
def baz(n):
print "{}".format(n)
And the including file (very similiar to Asker's):
# file: test.py
from mymodule import foo
def start():
# ...
foo(8)
OUTPUT_FILE = 'test.profile_info'
import pstats
import cProfile as profile
profile.run('start()', OUTPUT_FILE)
p = pstats.Stats(OUTPUT_FILE)
print "name: "
print p.sort_stats('name')
print "all stats: "
p.print_stats()
print "cumulative (top 10): "
p.sort_stats('cumulative').print_stats(10)
print "time (top 10): "
p.sort_stats('time').print_stats(10)
Notice the last line. I added a view sorted by time, which is the total time spent in the function "excluding time made in calls to sub-functions". I find this view much more useful, as it tends to favor the functions that are doing actual work, and may be in need of optimization.
Here's the part of the results that the Asker was working from (cumulative-sorted):
cumulative (top 10):
Thu Mar 24 21:26:32 2016 test.profile_info
2620840 function calls in 76.039 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 76.039 76.039 <string>:1(<module>)
1 0.000 0.000 76.039 76.039 test.py:5(start)
1 0.000 0.000 76.039 76.039 /Users/jhazen/mymodule.py:4(foo)
7 10.784 1.541 76.039 10.863 /Users/jhazen/mymodule.py:10(bar)
873605 49.503 0.000 49.503 0.000 /Users/jhazen/mymodule.py:15(exp200)
873612 15.634 0.000 15.634 0.000 {method 'format' of 'str' objects}
873605 0.118 0.000 0.118 0.000 {len}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:21(baz)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
See how the top 3 functions in this display were only called once. Let's look at the time-sorted view:
time (top 10):
Thu Mar 24 21:26:32 2016 test.profile_info
2620840 function calls in 76.039 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
873605 49.503 0.000 49.503 0.000 /Users/jhazen/mymodule.py:15(exp200)
873612 15.634 0.000 15.634 0.000 {method 'format' of 'str' objects}
7 10.784 1.541 76.039 10.863 /Users/jhazen/mymodule.py:10(bar)
873605 0.118 0.000 0.118 0.000 {len}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:21(baz)
1 0.000 0.000 76.039 76.039 /Users/jhazen/mymodule.py:4(foo)
1 0.000 0.000 76.039 76.039 test.py:5(start)
1 0.000 0.000 76.039 76.039 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Now the number one entry makes sense. Obviously raising something to the 200th power by repeated multiplication is a "naive" strategy. Let's replace it:
def exp200(n):
return n ** 200
And the results:
time (top 10):
Thu Mar 24 21:32:18 2016 test.profile_info
2620840 function calls in 30.646 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
873612 15.722 0.000 15.722 0.000 {method 'format' of 'str' objects}
7 9.760 1.394 30.646 4.378 /Users/jhazen/mymodule.py:10(bar)
873605 5.056 0.000 5.056 0.000 /Users/jhazen/mymodule.py:15(exp200)
873605 0.108 0.000 0.108 0.000 {len}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:18(baz)
1 0.000 0.000 30.646 30.646 /Users/jhazen/mymodule.py:4(foo)
1 0.000 0.000 30.646 30.646 test.py:5(start)
1 0.000 0.000 30.646 30.646 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
That's a nice improvement in time. Now str.format() is our worst offender. I added the line in bar() to print the length of the number, because my first attempt (just computing the number and doing nothing with it) got optimized away, and my attempt to avoid that (printing the number, which got really big really fast) seemed like it might be blocking on I/O, so I compromised on printing the length of the number. Hey, that's the base-10 log. Let's try that:
def bar(n):
for i in xrange(1,n):
e = exp200(i)
print "log e: ", math.log10(e)
And the results:
time (top 10):
Thu Mar 24 21:40:16 2016 test.profile_info
1747235 function calls in 11.279 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
7 6.082 0.869 11.279 1.611 /Users/jhazen/mymodule.py:10(bar)
873605 4.996 0.000 4.996 0.000 /Users/jhazen/mymodule.py:15(exp200)
873605 0.201 0.000 0.201 0.000 {math.log10}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:18(baz)
1 0.000 0.000 11.279 11.279 /Users/jhazen/mymodule.py:4(foo)
7 0.000 0.000 0.000 0.000 {method 'format' of 'str' objects}
1 0.000 0.000 11.279 11.279 test.py:5(start)
1 0.000 0.000 11.279 11.279 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Hmm, still a fair amount of time spent in bar(), even without the str.format(). Let's get rid of that print:
def bar(n):
z = 0
for i in xrange(1,n):
e = exp200(i)
z += math.log10(e)
return z
And the results:
time (top 10):
Thu Mar 24 21:45:24 2016 test.profile_info
1747235 function calls in 5.031 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
873605 4.487 0.000 4.487 0.000 /Users/jhazen/mymodule.py:17(exp200)
7 0.440 0.063 5.031 0.719 /Users/jhazen/mymodule.py:10(bar)
873605 0.104 0.000 0.104 0.000 {math.log10}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:20(baz)
1 0.000 0.000 5.031 5.031 /Users/jhazen/mymodule.py:4(foo)
7 0.000 0.000 0.000 0.000 {method 'format' of 'str' objects}
1 0.000 0.000 5.031 5.031 test.py:5(start)
1 0.000 0.000 5.031 5.031 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Now it looks like the stuff doing the actual work is the busiest function, so I think we're done optimizing.
Hope that helps!
Maybe you faced with a similar problem, so I'm going to describe here my issue. My profiling code looked like this:
def foobar():
import cProfile
pr = cProfile.Profile()
pr.enable()
for event in reader.events():
baz()
# and other things
pr.disable()
pr.dump_stats('result.prof')
And the final profiling output contained only events() call. And I spent not so little time to realise that I had empty loop profiling. Of course, there was more than one call of foobar() from a client code, but meaningful profiling results had been overwritten by last one call with empty loop.