Based on that answer here are two versions of merge function used for mergesort.
Could you help me to understand why the second one is much faster.
I have tested it for list of 50000 and the second one is 8 times faster (Gist).
def merge1(left, right):
i = j = inv = 0
merged = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
merged.append(left[i])
i += 1
else:
merged.append(right[j])
j += 1
inv += len(left[i:])
merged += left[i:]
merged += right[j:]
return merged, inv
.
def merge2(array1, array2):
inv = 0
merged_array = []
while array1 or array2:
if not array1:
merged_array.append(array2.pop())
elif (not array2) or array1[-1] > array2[-1]:
merged_array.append(array1.pop())
inv += len(array2)
else:
merged_array.append(array2.pop())
merged_array.reverse()
return merged_array, inv
Here is the sort function:
def _merge_sort(list, merge):
len_list = len(list)
if len_list < 2:
return list, 0
middle = len_list / 2
left, left_inv = _merge_sort(list[:middle], merge)
right, right_inv = _merge_sort(list[middle:], merge)
l, merge_inv = merge(left, right)
inv = left_inv + right_inv + merge_inv
return l, inv
.
import numpy.random as nprnd
test_list = nprnd.randint(1000, size=50000).tolist()
test_list_tmp = list(test_list)
merge_sort(test_list_tmp, merge1)
test_list_tmp = list(test_list)
merge_sort(test_list_tmp, merge2)
Similar answer as kreativitea's above, but with more info (i think!)
So profiling the actual merge functions, for the merging of two 50K arrays,
merge 1
311748 function calls in 15.363 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 15.363 15.363 <string>:1(<module>)
1 15.322 15.322 15.362 15.362 merge.py:3(merge1)
221309 0.030 0.000 0.030 0.000 {len}
90436 0.010 0.000 0.010 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
merge2
250004 function calls in 0.104 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 0.104 0.104 <string>:1(<module>)
1 0.074 0.074 0.103 0.103 merge.py:20(merge2)
50000 0.005 0.000 0.005 0.000 {len}
100000 0.010 0.000 0.010 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
100000 0.014 0.000 0.014 0.000 {method 'pop' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'reverse' of 'list' objects}
So for merge1, it's 221309 len, 90436 append, and takes 15.363 seconds.
So for merge2, it's 50000 len, 100000 append, and 100000 pop and takes 0.104 seconds.
len and append pop are all O(1) (more info here), so these profiles aren't showing what's actually taking the time, since going of just that, it should be faster, but only ~20% so.
Okay the cause is actually fairly obvious if you just read the code:
In the first method, there is this line:
inv += len(left[i:])
so every time that is called, it has to rebuild an array. If you comment out this line (or just replace it with inv += 1 or something) then it becomes faster than the other method. This is the single line responsible for the increased time.
Having noticed this is the cause, the issue can be fixed by improving the code; change it to this for a speed up. After doing this, it will be faster than merge2
inv += len(left) - i
Update it to this:
def merge3(left, right):
i = j = inv = 0
merged = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
merged.append(left[i])
i += 1
else:
merged.append(right[j])
j += 1
inv += len(left) - i
merged += left[i:]
merged += right[j:]
return merged, inv
You can use the excellent cProfile module to help you solve things like this.
>>> import cProfile
>>> a = range(1,20000,2)
>>> b = range(0,20000,2)
>>> cProfile.run('merge1(a, b)')
70002 function calls in 0.195 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.184 0.184 0.195 0.195 <pyshell#7>:1(merge1)
1 0.000 0.000 0.195 0.195 <string>:1(<module>)
50000 0.008 0.000 0.008 0.000 {len}
19999 0.003 0.000 0.003 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
>>> cProfile.run('merge2(a, b)')
50004 function calls in 0.026 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.016 0.016 0.026 0.026 <pyshell#12>:1(merge2)
1 0.000 0.000 0.026 0.026 <string>:1(<module>)
10000 0.002 0.000 0.002 0.000 {len}
20000 0.003 0.000 0.003 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
20000 0.005 0.000 0.005 0.000 {method 'pop' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'reverse' of 'list' objects}
After looking at the information a bit, it looks like the commenters are correct-- its not the len function-- it's the string module. The string module is invoked when you compare the length of things, as follows:
>>> cProfile.run('0 < len(c)')
3 function calls in 0.000 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {len}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
It is also invoked when slicing a list, but this is a very quick operation.
>>> len(c)
20000000
>>> cProfile.run('c[3:2000000]')
2 function calls in 0.011 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.011 0.011 0.011 0.011 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
TL;DR: Something in the string module is taking 0.195s in your first function, and 0.026s in your second function. : apparently, the rebuilding of the array in inv += len(left[i:]) this line.
If I had to guess, I would say it probably has to do with the cost of removing elements from a list, removing from the end (pop) is quicker than removing from the beginning. the second favors removing elements from the end of the list.
See Performance Notes: http://effbot.org/zone/python-list.htm
"The time needed to remove an item is about the same as the time needed to insert an item at the same location; removing items at the end is fast, removing items at the beginning is slow."
Related
I'm trying to profile a few lines of Pandas code, and when I run %prun i'm finding most of my time is taken by {isinstance}. This seems to happen a lot -- can anyone suggest what that means and, for bonus points, suggest a way to avoid it?
This isn't meant to be application specific, but here's a thinned out version of the code if that's important:
def flagOtherGroup(df):
try:mostUsed0 = df[df.subGroupDummy == 0].siteid.iloc[0]
except: mostUsed0 = -1
try: mostUsed1 = df[df.subGroupDummy == 1].siteid.iloc[0]
except: mostUsed1 = -1
df['mostUsed'] = 0
df.loc[(df.subGroupDummy == 0) & (df.siteid == mostUsed1), 'mostUsed'] = 1
df.loc[(df.subGroupDummy == 1) & (df.siteid == mostUsed0), 'mostUsed'] = 1
return df[['mostUsed']]
%prun -l15 temp = test.groupby('userCode').apply(flagOtherGroup)
And top lines of prun:
Ordered by: internal time
List reduced from 531 to 15 due to restriction <15>
ncalls tottime percall cumtime percall filename:lineno(function)
834472 1.908 0.000 2.280 0.000 {isinstance}
497048/395400 1.192 0.000 1.572 0.000 {len}
32722 0.879 0.000 4.479 0.000 series.py:114(__init__)
34444 0.613 0.000 1.792 0.000 internals.py:3286(__init__)
25990 0.568 0.000 0.568 0.000 {method 'reduce' of 'numpy.ufunc' objects}
82266/78821 0.549 0.000 0.744 0.000 {numpy.core.multiarray.array}
42201 0.544 0.000 1.195 0.000 internals.py:62(__init__)
42201 0.485 0.000 1.812 0.000 internals.py:2015(make_block)
166244 0.476 0.000 0.615 0.000 {getattr}
4310 0.455 0.000 1.121 0.000 internals.py:2217(_rebuild_blknos_and_blklocs)
12054 0.417 0.000 2.134 0.000 internals.py:2355(apply)
9474 0.385 0.000 1.284 0.000 common.py:727(take_nd)
isinstance, len and getattr are just the built-in functions. There are a huge number of calls to the isinstance() function here; it is not that the call itself takes a lot of time, but the function was used 834472 times.
Presumably it is the pandas code that uses it.
I have a script that finds the sum of all numbers that can be written as the sum of fifth powers of their digits. (This problem is described in more detail on the Project Euler web site.)
I have written it two ways, but I do not understand the performance difference.
The first way uses nested list comprehensions:
exp = 5
def min_combo(n):
return ''.join(sorted(list(str(n))))
def fifth_power(n, exp):
return sum([int(x) ** exp for x in list(n)])
print sum( [fifth_power(j,exp) for j in set([min_combo(i) for i in range(101,1000000) ]) if int(j) > 10 and j == min_combo(fifth_power(j,exp)) ] )
and profiles like this:
$ python -m cProfile euler30.py
443839
3039223 function calls in 2.040 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1007801 1.086 0.000 1.721 0.000 euler30.py:10(min_combo)
7908 0.024 0.000 0.026 0.000 euler30.py:14(fifth_power)
1 0.279 0.279 2.040 2.040 euler30.py:6(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1007801 0.175 0.000 0.175 0.000 {method 'join' of 'str' objects}
1 0.013 0.013 0.013 0.013 {range}
1007801 0.461 0.000 0.461 0.000 {sorted}
7909 0.002 0.000 0.002 0.000 {sum}
The second way is the more usual for loop:
exp = 5
ans= 0
def min_combo(n):
return ''.join(sorted(list(str(n))))
def fifth_power(n, exp):
return sum([int(x) ** exp for x in list(n)])
for j in set([ ''.join(sorted(list(str(i)))) for i in range(100, 1000000) ]):
if int(j) > 10:
if j == min_combo(fifth_power(j,exp)):
ans += fifth_power(j,exp)
print 'answer', ans
Here is the profiling info again:
$ python -m cProfile euler30.py
answer 443839
2039325 function calls in 1.709 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
7908 0.024 0.000 0.026 0.000 euler30.py:13(fifth_power)
1 1.081 1.081 1.709 1.709 euler30.py:6(<module>)
7902 0.009 0.000 0.015 0.000 euler30.py:9(min_combo)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1007802 0.147 0.000 0.147 0.000 {method 'join' of 'str' objects}
1 0.013 0.013 0.013 0.013 {range}
1007802 0.433 0.000 0.433 0.000 {sorted}
7908 0.002 0.000 0.002 0.000 {sum}
Why does the list comprehension implementation call min_combo() 1,000,000 more times than the for loop implementation?
Because on the second one you implemented again the content of min_combo inside the set call...
Do the same thing and you'll have the same result.
BTW, change those to avoid big lists being created:
sum([something for foo in bar]) -> sum(something for foo in bar)
set([something for foo in bar]) -> set(something for foo in bar)
(without [...] they become generator expressions).
I am using np.random.multinomial to sample a multinomial distribution M times (given probabilities [X_0 X_1 .. X_n] it returns counts [C_0 C_1 ... C_n] sampled from the specified multinomial, where \sum_i C_i = M). Given these sampled values (the C_i's), I want to assign them uniformly at random to some objects I have.
Currently what I'm doing is:
draws = np.random.multinomial(M, probs, size=1)
draws = draws[0]
draws_list = []
for idx,num in enumerate(draws):
draws_list += [idx]*num
random.shuffle(draws_list)
Then draws_list is a randomly shuffled list of the sampled values.
The problem is that populating draws_list (the for loop) is very slow. Is there a better/faster way to do this?
Try this code. This strategy is to allocate the memory first, then to fill data.
draws_list1 = np.empty(M, dtype=np.int)
acc = 0
for idx, num in enumerate(draws):
draws_list1[acc:acc+num].fill(idx)
acc += num
Here's the full code for profiling.
import numpy as np
import cProfile
M=10000000
draws = np.random.multinomial(M, [1/6.]*6, size=1)
draws = draws[0]
draws_list1 = np.empty(M, dtype=np.int)
def impl0():
draws_list0 = []
for idx, num in enumerate(draws):
draws_list0 += [idx]*num
return draws_list0
def impl1():
acc = 0
for idx, num in enumerate(draws):
draws_list1[acc:acc+num].fill(idx)
acc += num
return draws_list1
cProfile.run("impl0()")
cProfile.run("impl1()")
Here's the result of cProfile. If the statement np.empty is located in function impl1, 0.020 seconds are elapsed.
3 function calls in 0.095 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.020 0.020 0.095 0.095 <string>:1(<module>)
1 0.076 0.076 0.076 0.076 prof.py:11(impl0)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
9 function calls in 0.017 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.017 0.017 <string>:1(<module>)
1 0.000 0.000 0.017 0.017 prof.py:17(impl1)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
6 0.017 0.003 0.017 0.003 {method 'fill' of 'numpy.ndarray' objects}
Was writing a blog post about some python coding styles and came across something that I found very strange and I was wondering if someone understood what was going on with it. Basically I've got two versions of the same function:
a = lambda x: (i for i in range(x))
def b(x):
for i in range(x):
yield i
And I want to compare the performance of these two doing just being set up. In my mind this should involve a negligible amount of computation and both methods should come up pretty close to zero, however, when I actually ran the timeit:
def timing(x, number=10):
implicit = timeit.timeit('a(%s)' % int(x), 'from __main__ import a', number=number)
explicit = timeit.timeit('b(%s)' % int(x), 'from __main__ import b', number=number)
return (implicit, explicit)
def plot_timings(*args, **kwargs):
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
x_vector = np.linspace(*args, **kwargs)
timings = np.vectorize(timing)(x_vector)
ax.plot(x_vector, timings[0], 'b--')
ax.plot(x_vector, timings[1], 'r--')
ax.set_yscale('log')
plt.show()
plot_timings(1, 1000000, 20)
I get a HUGE difference between the two methods as shown below:
Where a is in blue, and b is in red.
Why is the difference so huge? It looks the explicit for loop version is also growing logarithmically, while the implicit version is doing nothing (as it should).
Any thoughts?
The difference is caused by range
a needs to call range when you construct it.
b doesn't need to call range until the first iteration
>>> def myrange(n):
... print "myrange(%s)"%n
... return range(n)
...
>>> a = lambda x: (i for i in myrange(x))
>>> def b(x):
... for i in myrange(x):
... yield i
...
>>> a(100)
myrange(100)
range(100)
<generator object <genexpr> at 0xd62d70>
>>> b(100)
<generator object b at 0xdadb90>
>>> next(_) # <-- first iteration of b(100)
myrange(100)
range(100)
0
The lambda call is the slow one. Check this out:
import cProfile
a = lambda x: (i for i in range(x))
def b(x):
for i in range(x):
yield i
def c(x):
for i in xrange(x):
yield i
def d(x):
i = 0
while i < x:
yield i
i += 1
N = 100000
print " -- a --"
cProfile.run("""
for x in xrange(%i):
a(x)
""" % N)
print " -- b --"
cProfile.run("""
for x in xrange(%i):
b(x)
""" % N)
print " -- c --"
cProfile.run("""
for x in xrange(%i):
c(x)
""" % N)
print " -- d --"
cProfile.run("""
for x in xrange(%i):
d(x)
""" % N)
print " -- a (again) --"
cProfile.run("""
for x in xrange(%i):
a(x)
""" % N)
Gives me the following results:
-- a --
300002 function calls in 61.764 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 30.881 30.881 61.764 61.764 <string>:3(<module>)
100000 0.051 0.000 0.051 0.000 test.py:5(<genexpr>)
100000 0.247 0.000 30.832 0.000 test.py:5(<lambda>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
100000 30.585 0.000 30.585 0.000 {range}
-- b --
100002 function calls in 0.076 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.066 0.066 0.076 0.076 <string>:3(<module>)
100000 0.010 0.000 0.010 0.000 test.py:7(b)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
-- c --
100002 function calls in 0.075 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.065 0.065 0.075 0.075 <string>:3(<module>)
100000 0.010 0.000 0.010 0.000 test.py:11(c)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
-- d --
100002 function calls in 0.075 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.065 0.065 0.075 0.075 <string>:3(<module>)
100000 0.010 0.000 0.010 0.000 test.py:15(d)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
-- a (again) --
300002 function calls in 60.890 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 30.487 30.487 60.890 60.890 <string>:3(<module>)
100000 0.049 0.000 0.049 0.000 test.py:5(<genexpr>)
100000 0.237 0.000 30.355 0.000 test.py:5(<lambda>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
100000 30.118 0.000 30.118 0.000 {range}
I'm trying to profile a function that calls other functions. I call the profiler as follows:
from mymodule import foo
def start():
# ...
foo()
import cProfile as profile
profile.run('start()', output_file)
p = pstats.Stats(output_file)
print "name: "
print p.sort_stats('name')
print "all stats: "
p.print_stats()
print "cumulative (top 10): "
p.sort_stats('cumulative').print_stats(10)
I find that the profiler says all the time was spend in function "foo()" of mymodule, instead of brekaing it down into the subfunctions foo() calls, which is what I want to see. How can I make the profiler report the performance of these functions?
thanks.
You need p.print_callees() to get hierarchical breakdown of method calls. The output is quite self explanatory: On the left column you can find your function of interest e.g.foo(), then going to the right side column shows all called sub-functions and their scoped total and cumulative times. Breakdowns for these sub-calls are also included etc.
First, I want to say that I was unable to replicate the Asker's issue. The profiler (in py2.7) definitely descends into the called functions and methods. (The docs for py3.6 look identical, but I haven't tested on py3.) My guess is that by limiting it to the top 10 returns, sorted by cumulative time, the first N of those were very high-level functions called a minimum of time, and the functions called by foo() dropped off the bottom of the list.
I decided to play with some big numbers for testing. Here's my test code:
# file: mymodule.py
import math
def foo(n = 5):
for i in xrange(1,n):
baz(i)
bar(i ** i)
def bar(n):
for i in xrange(1,n):
e = exp200(i)
print "len e: ", len("{}".format(e))
def exp200(n):
result = 1
for i in xrange(200):
result *= n
return result
def baz(n):
print "{}".format(n)
And the including file (very similiar to Asker's):
# file: test.py
from mymodule import foo
def start():
# ...
foo(8)
OUTPUT_FILE = 'test.profile_info'
import pstats
import cProfile as profile
profile.run('start()', OUTPUT_FILE)
p = pstats.Stats(OUTPUT_FILE)
print "name: "
print p.sort_stats('name')
print "all stats: "
p.print_stats()
print "cumulative (top 10): "
p.sort_stats('cumulative').print_stats(10)
print "time (top 10): "
p.sort_stats('time').print_stats(10)
Notice the last line. I added a view sorted by time, which is the total time spent in the function "excluding time made in calls to sub-functions". I find this view much more useful, as it tends to favor the functions that are doing actual work, and may be in need of optimization.
Here's the part of the results that the Asker was working from (cumulative-sorted):
cumulative (top 10):
Thu Mar 24 21:26:32 2016 test.profile_info
2620840 function calls in 76.039 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 76.039 76.039 <string>:1(<module>)
1 0.000 0.000 76.039 76.039 test.py:5(start)
1 0.000 0.000 76.039 76.039 /Users/jhazen/mymodule.py:4(foo)
7 10.784 1.541 76.039 10.863 /Users/jhazen/mymodule.py:10(bar)
873605 49.503 0.000 49.503 0.000 /Users/jhazen/mymodule.py:15(exp200)
873612 15.634 0.000 15.634 0.000 {method 'format' of 'str' objects}
873605 0.118 0.000 0.118 0.000 {len}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:21(baz)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
See how the top 3 functions in this display were only called once. Let's look at the time-sorted view:
time (top 10):
Thu Mar 24 21:26:32 2016 test.profile_info
2620840 function calls in 76.039 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
873605 49.503 0.000 49.503 0.000 /Users/jhazen/mymodule.py:15(exp200)
873612 15.634 0.000 15.634 0.000 {method 'format' of 'str' objects}
7 10.784 1.541 76.039 10.863 /Users/jhazen/mymodule.py:10(bar)
873605 0.118 0.000 0.118 0.000 {len}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:21(baz)
1 0.000 0.000 76.039 76.039 /Users/jhazen/mymodule.py:4(foo)
1 0.000 0.000 76.039 76.039 test.py:5(start)
1 0.000 0.000 76.039 76.039 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Now the number one entry makes sense. Obviously raising something to the 200th power by repeated multiplication is a "naive" strategy. Let's replace it:
def exp200(n):
return n ** 200
And the results:
time (top 10):
Thu Mar 24 21:32:18 2016 test.profile_info
2620840 function calls in 30.646 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
873612 15.722 0.000 15.722 0.000 {method 'format' of 'str' objects}
7 9.760 1.394 30.646 4.378 /Users/jhazen/mymodule.py:10(bar)
873605 5.056 0.000 5.056 0.000 /Users/jhazen/mymodule.py:15(exp200)
873605 0.108 0.000 0.108 0.000 {len}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:18(baz)
1 0.000 0.000 30.646 30.646 /Users/jhazen/mymodule.py:4(foo)
1 0.000 0.000 30.646 30.646 test.py:5(start)
1 0.000 0.000 30.646 30.646 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
That's a nice improvement in time. Now str.format() is our worst offender. I added the line in bar() to print the length of the number, because my first attempt (just computing the number and doing nothing with it) got optimized away, and my attempt to avoid that (printing the number, which got really big really fast) seemed like it might be blocking on I/O, so I compromised on printing the length of the number. Hey, that's the base-10 log. Let's try that:
def bar(n):
for i in xrange(1,n):
e = exp200(i)
print "log e: ", math.log10(e)
And the results:
time (top 10):
Thu Mar 24 21:40:16 2016 test.profile_info
1747235 function calls in 11.279 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
7 6.082 0.869 11.279 1.611 /Users/jhazen/mymodule.py:10(bar)
873605 4.996 0.000 4.996 0.000 /Users/jhazen/mymodule.py:15(exp200)
873605 0.201 0.000 0.201 0.000 {math.log10}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:18(baz)
1 0.000 0.000 11.279 11.279 /Users/jhazen/mymodule.py:4(foo)
7 0.000 0.000 0.000 0.000 {method 'format' of 'str' objects}
1 0.000 0.000 11.279 11.279 test.py:5(start)
1 0.000 0.000 11.279 11.279 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Hmm, still a fair amount of time spent in bar(), even without the str.format(). Let's get rid of that print:
def bar(n):
z = 0
for i in xrange(1,n):
e = exp200(i)
z += math.log10(e)
return z
And the results:
time (top 10):
Thu Mar 24 21:45:24 2016 test.profile_info
1747235 function calls in 5.031 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
873605 4.487 0.000 4.487 0.000 /Users/jhazen/mymodule.py:17(exp200)
7 0.440 0.063 5.031 0.719 /Users/jhazen/mymodule.py:10(bar)
873605 0.104 0.000 0.104 0.000 {math.log10}
7 0.000 0.000 0.000 0.000 /Users/jhazen/mymodule.py:20(baz)
1 0.000 0.000 5.031 5.031 /Users/jhazen/mymodule.py:4(foo)
7 0.000 0.000 0.000 0.000 {method 'format' of 'str' objects}
1 0.000 0.000 5.031 5.031 test.py:5(start)
1 0.000 0.000 5.031 5.031 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Now it looks like the stuff doing the actual work is the busiest function, so I think we're done optimizing.
Hope that helps!
Maybe you faced with a similar problem, so I'm going to describe here my issue. My profiling code looked like this:
def foobar():
import cProfile
pr = cProfile.Profile()
pr.enable()
for event in reader.events():
baz()
# and other things
pr.disable()
pr.dump_stats('result.prof')
And the final profiling output contained only events() call. And I spent not so little time to realise that I had empty loop profiling. Of course, there was more than one call of foobar() from a client code, but meaningful profiling results had been overwritten by last one call with empty loop.