Mathematical Function in Python does not work properly? - python

def trapezoidal(f, a, b, n):
h = float(b - a) / n
s = 0.0
s = s + f(a)
i=1
while i<=n-1:
s = s + f(a + i*h)
i= i +1
s = s + f(b)
s = s*h
return s
def f(x):
x = float(x)
return (-1/6)*(x-1)*(x-2)*(x+2)*(x-4)
lel = trapezoidal(f, -2, 4, 10)
print ("%.3f" % lel)
ok = f(-0.8)
print ok
I am trying to build a program that calculates integrals using the trapezoid rule. When I do it on paper it works fine but my f function does not work properly. For example f(-0.8) should be equal to 4.8384 but when I run it shows 29.0304. Please help?

If you are using Python 2.x
def f(x):
x = float(x)
return (-1/6)*(x-1)*(x-2)*(x+2)*(x-4)
The first term in your expression is doing integer division. The result of that division will be promoted to float later during the multiplication, but it is too late by then.
>>> (-1/6)
-1
You need to keep everything in floats
def f(x):
x = float(x)
return (-1.0/6.0)*(x-1)*(x-2)*(x+2)*(x-4)

Try
return (-1.0/6)*(x-1)*(x-2)*(x+2)*(x-4)

Related

How to do numerical integration in python?

I can't install anything new I need to use the default python library and I have to integrate a function. I can get the value for any f(x) and I need to integrate from 0 to 6 for my function f(x).
In discrete form, integration is just summation, i.e.
where n is the number of samples. If we let b-a/n be dx (the 'width' of our sample) then we can write this in python as such:
def integrate(f, a, b, dx=0.1):
i = a
s = 0
while i <= b:
s += f(i)*dx
i += dx
return s
Note that we make use of higher-order functions here. Specifically, f is a function that is passed to integrate. a, b are our bounds and dx is 1/10 by default. This allows us to apply our new integration function to any function we wish, like so:
# the linear function, y = x
def linear(x):
return x
integrate(linear, 1, 6) // output: 17.85
# or using lamdba function we can write it directly in the argument
# here is the quadratic function, y=x^2
integrate(lambda x: x**2, 0, 10) // output: 338.35
You can use quadpy (out of my zoo of packages):
import numpy
import quadpy
def f(x):
return numpy.sin(x) - x
val, err = quadpy.quad(f, 0.0, 6.0)
print(val)
-17.96017028290743
def func():
print "F(x) = 2x + 3"
x = int(raw_input('Enter an integer value for x: '))
Fx = 2 * x + 3
return Fx
print func()
using the input function in python, you can randomly enter any number you want and get the function or if hard coding this this necessary you can use a for loop and append the numbers to a list for example
def func2():
print "F(x) = 2x + 3"
x = []
for numbers in range(1,7):
x.append(numbers)
upd = 0
for i in x:
Fx = 2 * x[upd] + 3
upd +=1
print Fx
print func2()
EDIT: if you would like the numbers to start counting from 0 set the first value in range to 0 instead of 1

basic example of elgamal algorithm in python 2.7 [duplicate]

Does some standard Python module contain a function to compute modular multiplicative inverse of a number, i.e. a number y = invmod(x, p) such that x*y == 1 (mod p)? Google doesn't seem to give any good hints on this.
Of course, one can come up with home-brewed 10-liner of extended Euclidean algorithm, but why reinvent the wheel.
For example, Java's BigInteger has modInverse method. Doesn't Python have something similar?
Python 3.8+
y = pow(x, -1, p)
Python 3.7 and earlier
Maybe someone will find this useful (from wikibooks):
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
If your modulus is prime (you call it p) then you may simply compute:
y = x**(p-2) mod p # Pseudocode
Or in Python proper:
y = pow(x, p-2, p)
Here is someone who has implemented some number theory capabilities in Python: http://www.math.umbc.edu/~campbell/Computers/Python/numbthy.html
Here is an example done at the prompt:
m = 1000000007
x = 1234567
y = pow(x,m-2,m)
y
989145189L
x*y
1221166008548163L
x*y % m
1L
You might also want to look at the gmpy module. It is an interface between Python and the GMP multiple-precision library. gmpy provides an invert function that does exactly what you need:
>>> import gmpy
>>> gmpy.invert(1234567, 1000000007)
mpz(989145189)
Updated answer
As noted by #hyh , the gmpy.invert() returns 0 if the inverse does not exist. That matches the behavior of GMP's mpz_invert() function. gmpy.divm(a, b, m) provides a general solution to a=bx (mod m).
>>> gmpy.divm(1, 1234567, 1000000007)
mpz(989145189)
>>> gmpy.divm(1, 0, 5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: not invertible
>>> gmpy.divm(1, 4, 8)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: not invertible
>>> gmpy.divm(1, 4, 9)
mpz(7)
divm() will return a solution when gcd(b,m) == 1 and raises an exception when the multiplicative inverse does not exist.
Disclaimer: I'm the current maintainer of the gmpy library.
Updated answer 2
gmpy2 now properly raises an exception when the inverse does not exists:
>>> import gmpy2
>>> gmpy2.invert(0,5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: invert() no inverse exists
As of 3.8 pythons pow() function can take a modulus and a negative integer. See here. Their case for how to use it is
>>> pow(38, -1, 97)
23
>>> 23 * 38 % 97 == 1
True
Here is a one-liner for CodeFights; it is one of the shortest solutions:
MMI = lambda A, n,s=1,t=0,N=0: (n < 2 and t%N or MMI(n, A%n, t, s-A//n*t, N or n),-1)[n<1]
It will return -1 if A has no multiplicative inverse in n.
Usage:
MMI(23, 99) # returns 56
MMI(18, 24) # return -1
The solution uses the Extended Euclidean Algorithm.
Sympy, a python module for symbolic mathematics, has a built-in modular inverse function if you don't want to implement your own (or if you're using Sympy already):
from sympy import mod_inverse
mod_inverse(11, 35) # returns 16
mod_inverse(15, 35) # raises ValueError: 'inverse of 15 (mod 35) does not exist'
This doesn't seem to be documented on the Sympy website, but here's the docstring: Sympy mod_inverse docstring on Github
Here is a concise 1-liner that does it, without using any external libraries.
# Given 0<a<b, returns the unique c such that 0<c<b and a*c == gcd(a,b) (mod b).
# In particular, if a,b are relatively prime, returns the inverse of a modulo b.
def invmod(a,b): return 0 if a==0 else 1 if b%a==0 else b - invmod(b%a,a)*b//a
Note that this is really just egcd, streamlined to return only the single coefficient of interest.
I try different solutions from this thread and in the end I use this one:
def egcd(a, b):
lastremainder, remainder = abs(a), abs(b)
x, lastx, y, lasty = 0, 1, 1, 0
while remainder:
lastremainder, (quotient, remainder) = remainder, divmod(lastremainder, remainder)
x, lastx = lastx - quotient*x, x
y, lasty = lasty - quotient*y, y
return lastremainder, lastx * (-1 if a < 0 else 1), lasty * (-1 if b < 0 else 1)
def modinv(a, m):
g, x, y = self.egcd(a, m)
if g != 1:
raise ValueError('modinv for {} does not exist'.format(a))
return x % m
Modular_inverse in Python
Here is my code, it might be sloppy but it seems to work for me anyway.
# a is the number you want the inverse for
# b is the modulus
def mod_inverse(a, b):
r = -1
B = b
A = a
eq_set = []
full_set = []
mod_set = []
#euclid's algorithm
while r!=1 and r!=0:
r = b%a
q = b//a
eq_set = [r, b, a, q*-1]
b = a
a = r
full_set.append(eq_set)
for i in range(0, 4):
mod_set.append(full_set[-1][i])
mod_set.insert(2, 1)
counter = 0
#extended euclid's algorithm
for i in range(1, len(full_set)):
if counter%2 == 0:
mod_set[2] = full_set[-1*(i+1)][3]*mod_set[4]+mod_set[2]
mod_set[3] = full_set[-1*(i+1)][1]
elif counter%2 != 0:
mod_set[4] = full_set[-1*(i+1)][3]*mod_set[2]+mod_set[4]
mod_set[1] = full_set[-1*(i+1)][1]
counter += 1
if mod_set[3] == B:
return mod_set[2]%B
return mod_set[4]%B
The code above will not run in python3 and is less efficient compared to the GCD variants. However, this code is very transparent. It triggered me to create a more compact version:
def imod(a, n):
c = 1
while (c % a > 0):
c += n
return c // a
from the cpython implementation source code:
def invmod(a, n):
b, c = 1, 0
while n:
q, r = divmod(a, n)
a, b, c, n = n, c, b - q*c, r
# at this point a is the gcd of the original inputs
if a == 1:
return b
raise ValueError("Not invertible")
according to the comment above this code, it can return small negative values, so you could potentially check if negative and add n when negative before returning b.
To figure out the modular multiplicative inverse I recommend using the Extended Euclidean Algorithm like this:
def multiplicative_inverse(a, b):
origA = a
X = 0
prevX = 1
Y = 1
prevY = 0
while b != 0:
temp = b
quotient = a/b
b = a%b
a = temp
temp = X
a = prevX - quotient * X
prevX = temp
temp = Y
Y = prevY - quotient * Y
prevY = temp
return origA + prevY
Well, here's a function in C which you can easily convert to python. In the below c function extended euclidian algorithm is used to calculate inverse mod.
int imod(int a,int n){
int c,i=1;
while(1){
c = n * i + 1;
if(c%a==0){
c = c/a;
break;
}
i++;
}
return c;}
Translates to Python Function
def imod(a,n):
i=1
while True:
c = n * i + 1;
if(c%a==0):
c = c/a
break;
i = i+1
return c
Reference to the above C function is taken from the following link C program to find Modular Multiplicative Inverse of two Relatively Prime Numbers

Horner's method to return P(x) and its derivative

def horner(x,coeffs):
result = 0
deriv = 0
for a in coeffs:
result = x*result+a
deriv = x*deriv+result
return result,deriv
this is what I have got. But the value of deriv is not correct which I dont know why..
Your code is right, just need to switch the result and deriv lines round because in your first deriv value you want to be using your result = 0 to get the correct answer :)
I use this function to differenciate:
def differenciate(coefficients):
return [c * (len(coefficients) - i) for i, c in enumerate(coefficients[:-1])]
and this function to evaluate a polinomial:
def call(coefficients, x):
return sum(x ** (len(coefficients) - i - 1) * c for i, c in enumerate(coefficients))
There might be no need to do both in one function. You can do
call(differenciate([1, 2, 3, 4]), 4)
Used here

Fermat Factorisation with Python

New to Python and not sure why my fermat factorisation method is failing? I think it may have something to do with the way large numbers are being implemented but I don't know enough about the language to determine where I'm going wrong.
The code below works when n=p*q is made with p and q extremely close (as in within about 20 of each other) but seems to run forever if they are further apart. For example, with n=991*997 the code works correctly and executes in <1s, likewise for n=104729*104659. If I change it ton=103591*104659 however, it just runs forever (well, I let it go 2 hours then stopped it).
Any points in the right direction would be greatly appreciated!
Code:
import math
def isqrt(n):
x = n
y = (x + n // x) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x
n=103591*104729
a=isqrt(n) + 1
b2=a*a - n
b=isqrt(b2)
while b*b!=b2:
a=a+1
b2=b2+2*a+1
b=isqrt(b2)
p=a+b
q=a-b
print('a=',a,'\n')
print('b=',b,'\n')
print('p=',p,'\n')
print('q=',q,'\n')
print('pq=',p*q,'\n')
print('n=',n,'\n')
print('diff=',n-p*q,'\n')
I looked up the algorithm on Wikipedia and this works for me:
#from math import ceil
def isqrt(n):
x = n
y = (x + n // x) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x
def fermat(n, verbose=True):
a = isqrt(n) # int(ceil(n**0.5))
b2 = a*a - n
b = isqrt(n) # int(b2**0.5)
count = 0
while b*b != b2:
if verbose:
print('Trying: a=%s b2=%s b=%s' % (a, b2, b))
a = a + 1
b2 = a*a - n
b = isqrt(b2) # int(b2**0.5)
count += 1
p=a+b
q=a-b
assert n == p * q
print('a=',a)
print('b=',b)
print('p=',p)
print('q=',q)
print('pq=',p*q)
return p, q
n=103591*104729
fermat(n)
I tried a couple test cases. This one is from the wikipedia page:
>>> fermat(5959)
Trying: a=78 b2=125 b=11
Trying: a=79 b2=282 b=16
a= 80
b= 21
p= 101
q= 59
pq= 5959
(101, 59)
This one is your sample case:
>>> fermat(103591*104729)
Trying: a=104159 b2=115442 b=339
a= 104160
b= 569
p= 104729
q= 103591
pq= 10848981839
(104729, 103591)
Looking at the lines labeled "Trying" shows that, in both cases, it converges quite quickly.
UPDATE: Your very long integer from the comments factors as follows:
n_long=316033277426326097045474758505704980910037958719395560565571239100878192955228495343184968305477308460190076404967552110644822298179716669689426595435572597197633507818204621591917460417859294285475630901332588545477552125047019022149746524843545923758425353103063134585375275638257720039414711534847429265419
fermat(n_long, verbose=False)
a= 17777324810733646969488445787976391269105128850805128551409042425916175469326288448917184096591563031034494377135896478412527365012246902424894591094668262
b= 157517855001095328119226302991766503492827415095855495279739107269808590287074235
p= 17777324810733646969488445787976391269105128850805128551409042425916175469483806303918279424710789334026260880628723893508382860291986009694703181381742497
q= 17777324810733646969488445787976391269105128850805128551409042425916175469168770593916088768472336728042727873643069063316671869732507795155086000807594027
pq= 316033277426326097045474758505704980910037958719395560565571239100878192955228495343184968305477308460190076404967552110644822298179716669689426595435572597197633507818204621591917460417859294285475630901332588545477552125047019022149746524843545923758425353103063134585375275638257720039414711534847429265419
The error was doing the addition after incremeting a so the new value was not the square of a.
This works as intended :
while b*b!=b2:
b2+=2*a+1
a=a+1
b=isqrt(b2)
for big numbers it should be faster than computing the square which has quite a greater number of digits.

Python, square root function?

I have compiled multiple attempts at this and have failed miserably, some assistance would be greatly appreciated.
The function should have one parameter without using the print statement. Using Newton's method it must return the estimated square root as its value. Adding a for loop to update the estimate 20 times, and using the return statement to come up with the final estimate.
so far I have...
from math import *
def newton_sqrt(x):
for i in range(1, 21)
srx = 0.5 * (1 + x / 1)
return srx
This is not an assignment just practice. I have looked around on this site and found helpful ways but nothing that is descriptive enough.
This is an implementation of the Newton's method,
def newton_sqrt(val):
def f(x):
return x**2-val
def derf(x):
return 2*x
guess =val
for i in range(1, 21):
guess = guess-f(guess)/derf(guess)
#print guess
return guess
newton_sqrt(2)
See here for how it works. derf is the derivative of f.
I urge you to look at the section on Wikipedia regarding applying Newton's method to finding the square root of a number.
The process generally works like this, our function is
f(x) = x2 - a
f'(x) = 2x
where a is the number we want to find the square root of.
Therefore, our estimates will be
xn+1 = xn - (xn2 - a) / (2xn)
So, if your initial guess is x<sub>0</sub>, then our estimates are
x1 = x0 - (x02 - x) / (2x0)
x2 = x1 - (x12 - x) / (2x1)
x3 = x2 - (x22 - x) / (2x2)
...
Converting this to code, taking our initial guess to be the function argument itself, we would have something like
def newton_sqrt(a):
x = a # initial guess
for i in range(20):
x -= (x*x - a) / (2.0*x) # apply the iterative process once
return x # return 20th estimate
Here's a small demo:
>>> def newton_sqrt(a):
... x = a
... for i in range(20):
... x -= (x*x - a) / (2.0*x)
... return x
...
>>> newton_sqrt(2)
1.414213562373095
>>> 2**0.5
1.4142135623730951
>>>
>>> newton_sqrt(3)
1.7320508075688774
>>> 3**0.5
1.7320508075688772
In your code you are not updating x (and consequently srx) as you loop.
One problem is that x/1 is not going to do much and another is that since x never changes all the iterations of the loop will do the same.
Expanding on your code a bit, you could add a guess as a parameter
from math import *
def newton_sqrt(x, guess):
val = x
for i in range(1, 21):
guess = (0.5 * (guess + val / guess));
return guess
print newton_sqrt(4, 3) # Returns 2.0
You probably want something more like:
def newton_sqrt(x):
srx = 1
for i in range(1, 21):
srx = 0.5 * (srx + x/srx)
return srx
newton_sqrt(2.)
# 1.4142135623730949
This both: 1) updates the answer at each iteration, and 2) uses something much closer to the correct formula (ie, no useless division by 1).

Categories