numpy shuffle with constraint - python

I would like to shuffle a 1-d numpy array, with the constraint that no elements match the corresponding elements (ie., same index) from another array of the same shape. It can be assumed that all elements of each array are unique.
For example,
a = np.arange(10)
b = a.copy()
np.random.shuffle(b)
np.where(a==b) # This should be empty
What's the best way? Any ideas?

Adapted from georg's answer here
def random_derangement(n):
while True:
v = np.arange(n)
for j in np.arange(n - 1, -1, -1):
p = np.random.randint(0, j+1)
if v[p] == j:
break
else:
v[j], v[p] = v[p], v[j]
else:
if v[0] != 0:
return v

def random_derangement(N):
original = np.arange(N)
new = np.random.permutation(N)
same = np.where(original == new)[0]
while len(same) != 0:
swap = same[np.random.permutation(len(same))]
new[same] = new[swap]
same = np.where(original == new)[0]
if len(same) == 1:
swap = np.random.randint(0, N)
new[[same[0], swap]] = new[[swap, same[0]]]
return new

Related

Get indices in maximum sum of non-consecutive elements of an array

I came up with a DP algorithm to compute the maximum sum of non-consecutive elements of an array. I understand there are similar questions but none of them record the indices of the elements which make up the maximum sum.
Original algorithm:
def maxSum(arr) {
sum = [0]*len(arr);
sum_indices = []
for i in range(len(arr)):
if i==0:
sum[0] = arr[0];
else if(i==1) {
sum[1] = max(sum[0],arr[1]);
else
sum[i] = max(sum[i-2]+arr[i],sum[i-1]);
return sum[len(arr)-1];
Attempt at modification to return indices:
def maxSum(A):
n = len(A)
M = [0]*len(A)
M[0] = A[0]
I = [None]*len(A)
if A[0] > A[1]:
M[1] = A[0]
I[0] = True
I[1] = False
else:
M[1] = A[1]
I[0] = False
I[1] = True
for i in range(2, len(A)):
if M[i-1] > M[i-2] + A[i]:
M[i] = M[i-1]
I[i] = False
else:
M[i] = M[i-2] + A[i]
I[i] = True
I[i-1] = False
I[i-2] = True
indices = []
print(I)
for j in range(len(A)):
if I[j] == True:
indices.append(j)
return indices
For example, maxSum([1,2,3,8,9]) should return [1,3,9], but it returns [1, 2, 3, 9].
I have been trying to modify the DP algorithm to return the indices of the non-consecutive elements, but I have been struggling to do so. Is there some trick I'm missing?
If we can assume that arr has only nonnegative elements, then the following should work.
def max_sum(arr):
sum_and_ind= []
for i in range(len(arr)):
best = (arr[i], -1)
if 1 < i:
best = max(best, (sum_and_ind[i-2][0] + arr[i], i-2))
if 2 < i:
best = max(best, (sum_and_ind[i-3][0] + arr[i], i-3))
sum_and_ind.append(best)
if 0 == len(sum_and_ind):
return []
elif 1 == len(sum_and_ind):
return [0]
else:
best_i = None
if sum_and_ind[-1] > sum_and_ind[-2]:
best_i = len(sum_and_ind) - 1
else:
best_i = len(sum_and_ind) - 2
answer = []
while -1 < best_i:
answer.append(arr[best_i])
best_i = sum_and_ind[best_i][1]
return list(reversed(answer))
print(max_sum([1,2,3,8,9]))

Comparing another array with a list full of arrays

So I've essentially split an array#1(full of float values) into 100 arrays contained in a list, and what I want to do is compare it to an array#2(also full of floats) and have the program give me the number of values in array#2 that fall within the range of each of the 100 arrays in the list.
I may not have explained it well enough, but I've done this successfully for the first two arrays however I can't find a way to do it elegantly through a 'for' loop so I don't have to type it out 100 times.
Here's the code:
manual_bins_threshim = np.array_split(threshim_by_size, 100)
def count(rand, l, r):
return len(list(i for i in rand if l <= i <= r))
a = np.array(manual_bins_threshim[0:1])
l = a[:][0][0]
r = a[:][0][len(a[:][0]) -1]
a_1 = count(array2, l, r)
b = np.array(manual_bins_threshim[1:2])
l = b[:][0][0]
r = b[:][0][len(b[:][0]) -1]
b_1 = count(array2, l, r)
print(a_1,b_1)
I'm also open to a function that can do this in a different way if I've made it way more complicated than it needs to be.
Just iterate over the elements of manual_bins_threshim :
for a in manual_bins_threshim:
l = a[0,0]
r = a[0,-1]
print(count(array2, l, r))
A few words about my modifications:
l = a[:][0][0] → l = a[0,0] - I don't think [:] is needed here (it creates a new array referring to the same data).
r = a[:][0][len(a[:][0]) -1] → r = a[0,-1] - the last element of an array (or a list) can be accessed with -1 (by the way, the n-th element from the end can be accessed with -n).
This question requires some numpy high dimension array operation:
import numpy as np
threshim_by_size = np.random.rand(300)
manual_bins_threshim = np.array_split(threshim_by_size, 100)
array2 = np.random.rand(20)
def count(rand, ll, rr):
return len(list(i for i in rand if ll <= i <= rr))
a = np.array(manual_bins_threshim[0:1])
l = a[:][0][0]
r = a[:][0][len(a[:][0]) - 1]
a_1 = count(array2, l, r)
b = np.array(manual_bins_threshim[1:2])
l = b[:][0][0]
r = b[:][0][len(b[:][0]) - 1]
b_1 = count(array2, l, r)
print(a_1, b_1)
def array_op():
reshaped_threshim_by_size = np.reshape(threshim_by_size, [100, -1])
ll = reshaped_threshim_by_size[:, 0:1]
rr = reshaped_threshim_by_size[:, -1:]
reshape_array2 = np.reshape(array2, [1, -1])
mask = np.logical_and(ll <= reshape_array2, reshape_array2 <= rr)
return np.sum(mask, axis=1)
res = array_op()
assert res[0] == a_1 and res[1] == b_1

Row not adding to matrix in while loop in sympy

The aim of this program is to build a 3x3 matrix which then reduces additional rows, but, for some reason, after the second row is added to M in the while loop, it replaces it with the new row, rather than adding a third row, and, then, reducing additional (most likely 3) vectors after that. Here's the code:
from sympy import *
init_printing(use_unicode= True)
A = []
def reduceOneRow(M):
k = 0
for i in range(k,min(M.shape)-1):
if M[i,i]!=0 or i ==2:
for j in range(k,min(M.shape)-1):
T = Matrix([M.row(j+1)-(M[j+1,i]/M[i,i])*M.row(i)])
A.append(M[j+1]/M[i,i])
M.row_del(j+1)
M = M.row_insert(j+1,T)
k = k+1
else:
i = i+1
return M
# M = Matrix([[1,1,1],[1,4,7],[3,2,5]])
# reduceOneRow(M)
# A
#The following block of code generates a list of monomials, but not in reverse
#lexicagraphical order. This can be fixed later. Ultimately, I'd like to
#make it it's own function
sigma = symbols('x1:4')
D = [1]
for d in D:
for s in sigma:
if s*d not in D:
D.append(s*d)
if len(D) > 20:
break
# print(D)
# print(D[9].subs([('x1',4),('x2',2),('x3',3)]))
#We begin with the set up described in C1
P = [(1,2,3),(4,5,6),(7,8,9)]
G = []
Q = []
S = []
L = [1]
M = Matrix([])
#Here we being step C2.
while L != []:#what follows this while statement is the loop C2-C5 and back
t = L[0]
L.remove(L[0])
K = Matrix([]) #K is a kind of bucket matrix
if t==1: #this block generates the firs line in M. It had to be separate
for j in range(len(P)):#because of the way sympy works. 1 is int, rather
K = K.col_insert(j,Matrix([1])) #than a symbol
else: #here we generate all other rows of M, using K for the name of the rows
for p in P:
K = K.col_insert(0,Matrix([t.subs([(sigma[0],p[0]),(sigma[1],p[1]),(sigma[2],p[2])])]))
# K = K.col_insert(i,Matrix([t.subs([(sigma[0],p[0]),(sigma[1],p[1]),(sigma[2],p[2])]))
M = M.row_insert(min(M.shape)+1,K) #K gets added to M
M
A = []
reduceOneRow(M)#row reduces M and produces the ai in C3
sum = 0
for n in range(len(A)):
sum = sum + A[n]*S[n]
V = M.row(-1)
if V == zeros(1,len(V)):
G.append(t - sum)
M.row_del(-1)
else:
S.append(t-sum)
Q.append(t)
for i in range(1,4):
#if not t*D[i] == Q[0]:
L.append(t*D[i])
L
print('G =',' ',G,' ','Q =',Q)
I figure it out. I changed 'reduceRowOne(M)' to 'M = reduceRowOne'. Ugh.
Thank you all who took a look at this!

Optimize iteration through numpy array when averaging adjacent values

I have a definition in python that
Iterates over a sorted distinct array of Floats
Gets the previous and next item
Finds out if they are within a certain range of each other
averages them out, and replaces the original values with the averaged value
rerun through that loop until there are no more changes
returns a distinct array
The issue is that it is extremely slow. the array "a" could be 100k+ and it takes 7-10 minutes to complete
I found that I needed to iterate over the array after the initial iteration because after averaging, sometimes the average values could be within range to be averaged again
I thought about breaking it into chunks and use multiprocessing, my concern is the end of one chunk, and the beginning of the next chunk would need to be averaged too.
def reshape_arr(a, close):
"""Iterates through 'a' to find values +- 'close', and averages them, then returns a distinct array of values"""
flag = True
while flag:
array = a.sort_values().unique()
l = len(array)
flag = False
for i in range(l):
previous_item = next_item = None
if i > 0:
previous_item = array[i - 1]
if i < (l - 1):
next_item = array[i + 1]
if previous_item is not None:
if abs(array[i] - previous_item) < close:
average = (array[i] + previous_item) / 2
flag = True
#find matching values in a, and replace with the average
a.replace(previous_item, value=average, inplace=True)
a.replace(array[i], value=average, inplace=True)
if next_item is not None:
if abs(next_item - array[i]) < close:
flag = True
average = (array[i] + next_item) / 2
# find matching values in a, and replace with the average
a.replace(array[i], value=average, inplace=True)
a.replace(next_item, value=average, inplace=True)
return a.unique()
a is a Pandas.Series from a DataFrame of anything between 0 and 200k rows, and close is an int (100 for example)
it works, just very slow.
First, if the length of the input array a is large and close is relatively small, your proposed algorithm may be numerically unstable.
That being said, here are some ideas that reduce the time complexity from O(N^3) to O(N) (for an approximate implementation) or O(N^2) (for an equivalent implementation). For N=100, this gives a speedup up to a factor of 6000 for some choices of arr and close.
Consider an input array arr = [a,b,c,d], and suppose that close > d - a. In this case, the algorithm proceeds as follows:
[a,b,c,d]
[(a+b)/2,(b+c)/2,(c+d)/2]
[(a+2b+c)/4,(b+2c+d)/4]
[(a+3b+3c+d)/8]
One can recognize that if [x_1, x_2, ..., x_n] is a maximal contiguous subarray of arr s.t. x_i - x_{i-1} < close, then [x_1, x_2, ..., x_n] eventually evaluates to (sum_{k=0}^{k=n} x_k * c_{n,k})/(2^(n-1)) where c_{n,k} is the binomial coefficient n choose k.
This gives an O(N) implementation as follows:
import numpy as np
from scipy.stats import binom
from scipy.special import comb
def binom_mean(arr, scipy_cutoff=64):
"""
Given an array arr, returns an average of arr
weighted by binomial coefficients.
"""
n = arr.shape[0]
if arr.shape[0] == 1:
return arr[0]
# initializing a scipy binomial random variable can be slow
# so, if short runs are likely, we can speed things up
# by doing explicit computations
elif n < scipy_cutoff:
return np.average(arr, weights=comb(n-1, np.arange(n), exact=False))
else:
f = binom(n-1, 0.5).pmf
return np.average(arr, weights=f(np.arange(n)))
def reshape_arr_binom(arr, close):
d = np.ediff1d(arr, to_begin=0) < close
close_chunks = np.split(arr, np.where(~d)[0])
return np.fromiter(
(binom_mean(c) for c in close_chunks),
dtype=np.float
)
The result is within 10e-15 of your implementation for np.random.seed(0);N=1000;cost=1/N;arr=np.random.rand(N). However, for large N, this may not be meaningful unless cost is small. For the above parameter values, this is 270 times faster than the original code on my machine.
However, if we choose a modest value of N = 100 and set close to a large value like 1, the speedup is by a factor of 6000. This is because for large values of close, the original implementation is O(N^3); specifically, a.replace is potentially called O(N^2) times and has a cost O(N). So, maximal speedup is achieved when contiguous elements are likely to be close.
For the reference, here is an O(N^2) implementation that is equivalent to your code (I do not recommend using this in practice).
import pandas as pd
import numpy as np
np.random.seed(0)
def custom_avg(arr, indices, close):
new_indices = list()
last = indices[-1]
for i in indices:
if arr[i] - arr[i-1] < close:
new_indices.append(i)
avg = (arr[i-1] + arr[i]) / 2
arr[i-1] = avg
if i != last and arr[i+1] - arr[i] >= close:
arr[i] = avg
return new_indices
def filter_indices(indices):
new_indices = list()
second_dups = list()
# handle empty index case
if not indices:
return new_indices, second_dups
for i, j in zip(indices, indices[1:]):
if i + 1 == j:
# arr[i] is guaranteed to be different from arr[i-1]
new_indices.append(i)
else:
# arr[i+1] is guaranteed to be a duplicate of arr[i]
second_dups.append(i)
second_dups.append(indices[-1])
return new_indices, second_dups
def reshape_arr_(arr, close):
indices = range(1, len(arr))
dup_mask = np.zeros(arr.shape, bool)
while indices:
indices, second_dups = filter_indices(custom_avg(arr, indices, close))
# print(f"n_inds = {len(indices)};\tn_dups = {len(second_dups)}")
dup_mask[second_dups] = True
return np.unique(arr[~dup_mask])
The basic ideas are the following:
First, consider two adjacent elements (i,j) with j = i + 1. If arr[j] - arr[i] >= close in current iteration, arr[j] - arr[i] >= close also holds after the current iteration. This is because arr[i] can only decrease and arr[j] can only increase. So, if (i,j) pair is not averaged in the current iteration, it will not be averaged in any of the subsequent iterations. So, we can avoid looking at (i,j) in the future.
Second, if (i,j) is averaged and (i+1,j+1) is not, we know that arr[i] is a duplicate of arr[j]. Also, the last modified element in each iteration is always a duplicate.
Based on these observations, we need to process fewer and fewer indices in each iteration. The worst case is still O(N^2), which can be witnessed by setting close = arr.max() - arr.min() + 1.
Some benchmarks:
from timeit import timeit
make_setup = """
from __main__ import np, pd, reshape_arr, reshape_arr_, reshape_arr_binom
np.random.seed(0)
arr = np.sort(np.unique(np.random.rand({N})))
close = {close}""".format
def benchmark(N, close):
np.random.seed(0)
setup = make_setup(N=N, close=close)
print('Original:')
print(timeit(
stmt='reshape_arr(pd.Series(arr.copy()), close)',
# setup='from __main__ import reshape_arr; import pandas as pd',
setup=setup,
number=1,
))
print('Quadratic:')
print(timeit(
stmt='reshape_arr_(arr.copy(), close)',
setup=setup,
number=10,
))
print('Binomial:')
print(timeit(
stmt='reshape_arr_binom(arr.copy(), close)',
setup=setup,
number=10,
))
if __name__ == '__main__':
print('N=10_000, close=1/N')
benchmark(10_000, 1/10_000)
print('N=100, close=1')
benchmark(100, 1)
# N=10_000, close=1/N
# Original:
# 14.855983458999999
# Quadratic:
# 0.35902471400000024
# Binomial:
# 0.7207887170000014
# N=100, close=1
# Original:
# 4.132993569
# Quadratic:
# 0.11140068399999947
# Binomial:
# 0.007650813999998007
The following table shows how the number of pairs we need to look at in the quadratic algorithm goes down each iteration.
n_inds = 39967; n_dups = 23273
n_inds = 25304; n_dups = 14663
n_inds = 16032; n_dups = 9272
n_inds = 10204; n_dups = 5828
n_inds = 6503; n_dups = 3701
n_inds = 4156; n_dups = 2347
n_inds = 2675; n_dups = 1481
n_inds = 1747; n_dups = 928
n_inds = 1135; n_dups = 612
n_inds = 741; n_dups = 394
n_inds = 495; n_dups = 246
n_inds = 327; n_dups = 168
n_inds = 219; n_dups = 108
n_inds = 145; n_dups = 74
n_inds = 95; n_dups = 50
n_inds = 66; n_dups = 29
n_inds = 48; n_dups = 18
n_inds = 36; n_dups = 12
n_inds = 26; n_dups = 10
n_inds = 20; n_dups = 6
n_inds = 15; n_dups = 5
n_inds = 10; n_dups = 5
n_inds = 6; n_dups = 4
n_inds = 3; n_dups = 3
n_inds = 1; n_dups = 2
n_inds = 0; n_dups = 1
You can use the following function to produce similar output to yours (with the difference that the result from your function is unsorted since a is never sorted outside the loop and pd.Series.unique returns values in order of appearance; if this is actually desired, check the second function). Sorting the array on every loop iteration is not required since replacing with the average of two subsequent (unique) items in a sorted array will not invalidate the sorting. Since on every iteration the comparison with next_item will be the comparison with prev_item during the next iteration you can just compare subsequent elements in a pairwise manner once.
def solve_sorted(a, close):
"""Returns the reduced unique values as a sorted array."""
a = a.sort_values().values.astype(float)
while True:
a = np.unique(a)
comp = a[1:] - a[:-1] < close
if not comp.sum():
break
indices = np.tile(comp.nonzero()[0][:, None], (1, 2))
indices[:, 1] += 1
avg = a[indices].mean(axis=1)
a[indices.ravel()] = np.repeat(avg, 2)
return np.unique(a)
If it is important to preserve the original order of elements then you can store the reverse sorting indices once at the beginning to restore the original order at the end:
def solve_preserve_order(a, close):
"""Returns the reduced unique values in their original order."""
reverse_indices = np.argsort(np.argsort(a.values))
a = a.sort_values()
while True:
b = a.unique()
comp = b[1:] - b[:-1] < close
if not comp.sum():
break
indices = np.tile(comp.nonzero()[0][:, None], (1, 2))
indices[:, 1] += 1
avg = b[indices].mean(axis=1)
a.replace(b[indices.ravel()], np.repeat(avg, 2), inplace=True)
return a.iloc[reverse_indices].unique()
Performance comparison
Testing the performance of the different presented algorithms for sorted, unique-valued input arrays (code attached below). Functions:
reshape_arr_binom, reshape_arr_
solve_sorted
Performance scaling with the size of the input array
Using close = 1 / arr.size.
Scaling with the interval length
Using arr.size == 1_000; close is the interval length.
Source code
"""Performance plots.
Assuming a sorted, unique-valued array as an input.
Function names have format `a<id>_*` where <id> is the answer's id."""
from timeit import timeit
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import perfplot
from scipy.stats import binom
from scipy.special import comb
def OP_reshape_arr(a, close):
flag = True
while flag:
array = a.sort_values().unique()
l = len(array)
flag = False
for i in range(l):
previous_item = next_item = None
if i > 0:
previous_item = array[i - 1]
if i < (l - 1):
next_item = array[i + 1]
if previous_item is not None:
if abs(array[i] - previous_item) < close:
average = (array[i] + previous_item) / 2
flag = True
a.replace(previous_item, value=average, inplace=True)
a.replace(array[i], value=average, inplace=True)
if next_item is not None:
if abs(next_item - array[i]) < close:
flag = True
average = (array[i] + next_item) / 2
a.replace(array[i], value=average, inplace=True)
a.replace(next_item, value=average, inplace=True)
return a.unique()
def _binom_mean(arr, scipy_cutoff=64):
n = arr.shape[0]
if arr.shape[0] == 1:
return arr[0]
elif n < scipy_cutoff:
return np.average(arr, weights=comb(n-1, np.arange(n), exact=False))
else:
f = binom(n-1, 0.5).pmf
return np.average(arr, weights=f(np.arange(n)))
def a57438948_reshape_arr_binom(arr, close):
d = np.ediff1d(arr, to_begin=0) < close
close_chunks = np.split(arr, np.where(~d)[0])
return np.fromiter(
(_binom_mean(c) for c in close_chunks),
dtype=np.float
)
def _custom_avg(arr, indices, close):
new_indices = list()
last = indices[-1]
for i in indices:
if arr[i] - arr[i-1] < close:
new_indices.append(i)
avg = (arr[i-1] + arr[i]) / 2
arr[i-1] = avg
if i != last and arr[i+1] - arr[i] >= close:
arr[i] = avg
return new_indices
def _filter_indices(indices):
new_indices = list()
second_dups = list()
if not indices:
return new_indices, second_dups
for i, j in zip(indices, indices[1:]):
if i + 1 == j:
new_indices.append(i)
else:
second_dups.append(i)
second_dups.append(indices[-1])
return new_indices, second_dups
def a57438948_reshape_arr_(arr, close):
indices = range(1, len(arr))
dup_mask = np.zeros(arr.shape, bool)
while indices:
indices, second_dups = _filter_indices(_custom_avg(arr, indices, close))
dup_mask[second_dups] = True
return np.unique(arr[~dup_mask])
def a57438149_solve_sorted(a, close):
while True:
comp = a[1:] - a[:-1] < close
if not comp.sum():
break
indices = np.tile(comp.nonzero()[0][:, None], (1, 2))
indices[:, 1] += 1
avg = a[indices].mean(axis=1)
a[indices.ravel()] = np.repeat(avg, 2)
a = np.unique(a)
return a
np.random.seed(0)
a = np.unique(np.random.rand(10_000))
c = 1/a.size
ref = OP_reshape_arr(pd.Series(a.copy()), c)
test = [
a57438948_reshape_arr_binom(a.copy(), c),
a57438948_reshape_arr_(a.copy(), c),
a57438149_solve_sorted(a, c),
]
assert all(x.shape == ref.shape and np.allclose(x, ref) for x in test)
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
perfplot.bench(
setup = lambda n: np.random.seed(0) or (np.unique(np.random.rand(n)), 1/n),
kernels=[
lambda x: OP_reshape_arr(pd.Series(x[0].copy()), x[1]),
lambda x: a57438948_reshape_arr_binom(x[0].copy(), x[1]),
lambda x: a57438948_reshape_arr_(x[0].copy(), x[1]),
lambda x: a57438149_solve_sorted(x[0], x[1]),
],
labels=['OP_reshape_arr', 'reshape_arr_binom', 'reshape_arr_', 'solve_sorted'],
n_range=np.logspace(2, 4, 8).astype(int),
xlabel='size of initial array (before np.unique; using interval length of 1/n)',
logx=True,
logy=True,
colors=colors,
automatic_order=False,
).plot()
plt.gca().set_xlim([1e2, 1e4])
plt.gca().set_ylim([1e-4, 20])
plt.savefig('scaling_with_array_size.png')
plt.close()
np.random.seed(0)
a = np.unique(np.random.rand(1_000_000))
c = 1/a.size
test = [
a57438948_reshape_arr_binom(a.copy(), c),
a57438948_reshape_arr_(a.copy(), c),
a57438149_solve_sorted(a, c),
]
assert all(x.shape == test[0].shape and np.allclose(x, test[0]) for x in test)
perfplot.bench(
setup = lambda n: np.random.seed(0) or (np.unique(np.random.rand(n)), 1/n),
kernels=[
lambda x: a57438948_reshape_arr_binom(x[0].copy(), x[1]),
lambda x: a57438948_reshape_arr_(x[0].copy(), x[1]),
lambda x: a57438149_solve_sorted(x[0], x[1]),
],
labels=['reshape_arr_binom', 'reshape_arr_', 'solve_sorted'],
n_range=np.logspace(4, 6, 5).astype(int),
xlabel='size of initial array (before np.unique; using interval length of 1/n)',
logx=True,
logy=True,
colors=colors[1:],
automatic_order=False,
).plot()
plt.gca().set_xlim([1e4, 1e6])
plt.gca().set_ylim([5e-4, 10])
plt.savefig('scaling_with_array_size_2.png')
plt.close()
perfplot.bench(
setup = lambda n: np.random.seed(0) or (np.unique(np.random.rand(1_000)), n),
kernels=[
lambda x: OP_reshape_arr(pd.Series(x[0].copy()), x[1]),
lambda x: a57438948_reshape_arr_binom(x[0].copy(), x[1]),
lambda x: a57438948_reshape_arr_(x[0].copy(), x[1]),
lambda x: a57438149_solve_sorted(x[0], x[1]),
],
labels=['OP_reshape_arr', 'reshape_arr_binom', 'reshape_arr_', 'solve_sorted'],
n_range=np.logspace(-6, -2, 16),
xlabel='length of interval (using array of size 1,000)',
logx=True,
logy=True,
colors=colors,
automatic_order=False,
).plot()
plt.gca().set_xlim([1e-6, 1e-2])
plt.gca().set_ylim([2e-5, 1e3])
plt.savefig('scaling_with_interval_length.png')
plt.close()

Python: IndexError: index 7 is out of bounds for axis 1 with size 7

I'm trying to loop over a matrix and replacing the entries using operations involving the matrices around it:
For example,
xarray = np.array([3,35,7,9,8,7,6])
yarray = np.array([2,5,1,7,3,59,2])
zarray = np.array([3,5,6,3.5,69,2,1])
barray = np.array([1,5,56,7,24,2,1])
carray = np.array([1,5,56,7,24,2,1])
darray = np.array([1,5,56,7,24,2,1])
earray = np.array([1,5,56,7,24,2,1])
Q = np.array([xarray,yarray,zarray,barray,carray,darray,earray])
k = np.shape(Q)
for i in range(k[0]):
for j in range(k[1]):
$taking into account entries on the corners which don't have the same amount of surrounding matrices
if i==0 or j==0 or i == k[0] or j == k[1]:
Q[i,j] = Q[i,j]
else:
Q[i,j] = (Q[i,j]+Q[i-1,j]+Q[i+1,j]+Q[i,j+1]+Q[i-1,j-1]+Q[i-1,j+1])*3
print Q
But I get the error above. Any help would be appreciated.
Remember that in python indexes start from 0, which means if i or j is equal to the length of the array, you'll get an error
All I've done here is switched range(k[x]) for range(k[x] - 1)
for i in range(k[0] - 1):
for j in range(k[1] - 1):
if i==0 or j==0:
Q[i,j] = Q[i,j]
else:
Q[i,j] = (Q[i,j]+Q[i-1,j]+Q[i+1,j]+Q[i,j+1]+Q[i-1,j-1]+Q[i-1,j+1])*3

Categories