Replacing a segmented part of an image with it's unsegmented part - python

I am trying to replace a segmented part of an image with it's unsegmented part with OpenCV in Python. The pictures will make you understand what I mean.
The following picture is the first one, before segmentation :
This is the picture after segmentation :
This is the third picture, after doing what I'm talking about :
How can I do this ? Thanks in advance for your help !

This is actually pretty easy. All you have to do is take your picture after segmentation, and multiply it by a mask where any pixel in the mask that is 0 becomes 1, and anything else becomes 0.
This will essentially blacken all of the pixels with the exception of the pixels within the mask that are 1. By multiplying each of the pixels in your image by the mask, you would effectively produce what you have shown in the figure, but the background is black. All you would have to do now is figure out which locations in your mask are white and set the corresponding locations in your output image to white. In other words:
import cv2
# Load in your original image
originalImg = cv2.imread('Inu8B.jpg',0)
# Load in your mask
mask = cv2.imread('2XAwj.jpg', 0)
# Get rid of quantization artifacts
mask[mask < 128] = 0
mask[mask > 128] = 1
# Create output image
outputImg = originalImg * (mask == 0)
outputImg[mask == 1] = 255
# Display image
cv2.imshow('Output Image', outputImg)
cv2.waitKey(0)
cv2.destroyAllWindows()
Take note that I downloaded the images from your post and loaded them from my computer. Also, your mask has some quantization artifacts due to JPEG, and so I thresholded at intensity 128 to ensure that your image consists of either 0s or 1s.
This is the output I get:
Hope this helps!

Basically, you have a segmentation mask and an image. All you need to do is copy the pixels in the image corresponding to the pixels in the label mask. Generally, the mask dimensions and the image dimensions are the same (if not, you need to resize your mask to the image dimensions). Also, the segmentation pixels corresponding to a particular mask would have the same integer value (1,2,3 etc and background pixels would have a value of 0). So, find out which pixel co-ordinates have a value corresponding to the mask value and use those co-ordinates to find out the intensity values in the image. If you know the syntax of how to access a pixel co-ordinate, read an image in the programming environment you are using and follow the aforementioned procedure, you should be able to do it.

Related

How To Get The Pixel Count Of A Segmented Area in an Image I used Vgg16 for Segmentation

I am new to deep learning but have succeeded in semantic segmentation of the image I am trying to get the pixel count of each class in the label. As an example in the image I want to get the pixel count of the carpet, or the chandelier or the light stand. How do I go about? Thanks any suggestions will help.
Edit: In what format the regions are returned? Do you have only the final image or the regions are given as contours? If you have them as contours (list of coordinates), you can apply findContourArea directly on that structure.
If you can receive/sample the regions one by one in an image (but do not have the contour), you can sequentially paint each of the colors/classes in a clear image, either convert it to grayscale or directly paint it in grayscale or binary, or binarize with threshold; then numberPixels = len(cv2.findNonZero(bwImage)). cv2.findContour and cv2.contourArea should do the same.
Instead of rendering each class in a separate image, if your program receives only the final segmentation and not per-class contours, you can filter/mask the regions by color ranges on that image. I built that and it seemed to do the job, 14861 pixels for the pink carpet:
import cv2
import numpy as np
# rgb 229, 0, 178 # the purple carpet in RGB (sampled with IrfanView)
# b,g,r = 178, 0, 229 # cv2 uses BGR
class_color = [178, 0, 229]
multiclassImage = cv2.imread("segmented.png")
cv2.imshow("MULTI", multiclassImage)
filteredImage = multiclassImage.copy()
low = np.array(class_color);
mask = cv2.inRange(filteredImage, low, low)
filteredImage[mask == 0] = [0, 0, 0]
filteredImage[mask != 0] = [255,255,255]
cv2.imshow("FILTER", filteredImage)
# numberPixelsFancier = len(cv2.findNonZero(filteredImage[...,0]))
# That also works and returns 14861 - without conversion, taking one color channel
bwImage = cv2.cvtColor(filteredImage, cv2.COLOR_BGR2GRAY)
cv2.imshow("BW", bwImage)
numberPixels = len(cv2.findNonZero(bwImage))
print(numberPixels)
cv2.waitKey(0)
If you don't have the values of the colors given or/and can't control them, you can use numpy.unique(): https://numpy.org/doc/stable/reference/generated/numpy.unique.html and it will return the unique colors, then they could be applied in the algorithm above.
Edit 2: BTW, another way to compute or verify such counts is by calculating histograms. That's with IrfanView on the black-white image:

How to crop elliptical region from image using Python

I have code for rectangle cropping ,Honestly I'm beginner to python
this code was i saw on a site
I'm using PIL library
from PIL import Image
im = Image.open("lenna.png")
crop_rectangle = (50, 50, 200, 200)
cropped_im = im.crop(crop_rectangle)
cropped_im.show()
please help me to crop ellipse or circle region from a image
thank you in advance
Cropping an image to an elliptical or circle region will produce the same results as cropping to a square, if their extents are the same. I am assuming that you also want to mask the image as well as crop?
To do this, create a blank mask PIL Image with the same extent as the original, use PIL.ImageDraw.Draw to draw a polygon onto the image. The mask image should now now have binary pixel values where "1" represents masked. Then simply set all values in the original image to a masked value (i.e. np.nan) where the mask pixel values equal 1 (e.g. original_image[mask == 1] = np.nan).

How to get border pixels of an image in python?

I have an image, using steganography I want to save the data in border pixels only.
In other words, I want to save data only in the least significant bits(LSB) of border pixels of an image.
Is there any way to get border pixels to store data( max 15 characters text) in the border pixels?
Plz, help me out...
OBTAINING BORDER PIXELS:
Masking operations are one of many ways to obtain the border pixels of an image. The code would be as follows:
a= cv2.imread('cal1.jpg')
bw = 20 //width of border required
mask = np.ones(a.shape[:2], dtype = "uint8")
cv2.rectangle(mask, (bw,bw),(a.shape[1]-bw,a.shape[0]-bw), 0, -1)
output = cv2.bitwise_and(a, a, mask = mask)
cv2.imshow('out', output)
cv2.waitKey(5000)
After I get an array of ones with the same dimension as the input image, I use cv2.rectangle function to draw a rectangle of zeros. The first argument is the image you want to draw on, second argument is start (x,y) point and the third argument is the end (x,y) point. Fourth argument is the color and '-1' represents the thickness of rectangle drawn (-1 fills the rectangle). You can find the documentation for the function here.
Now that we have our mask, you can use 'cv2.bitwise_and' (documentation) function to perform AND operation on the pixels. Basically what happens is, the pixels that are AND with '1' pixels in the mask, retain their pixel values. Pixels that are AND with '0' pixels in the mask are made 0. This way you will have the output as follows:
.
The input image was :
You have the border pixels now!
Using LSB planes to store your info is not a good idea. It makes sense when you think about it. A simple lossy compression would affect most of your hidden data. Saving your image as JPEG would result in loss of info or severe affected info. If you want to still try LSB, look into bit-plane slicing. Through bit-plane slicing, you basically obtain bit planes (from MSB to LSB) of the image. (image from researchgate.net)
I have done it in Matlab and not quite sure about doing it in python. In Matlab,
the function, 'bitget(image, 1)', returns the LSB of the image. I found a question on bit-plane slicing using python here. Though unanswered, you might want to look into the posted code.
To access border pixel and enter data into it.
A shape of an image is accessed by t= img.shape. It returns a tuple of the number of rows, columns, and channels.A component is RGB which 1,2,3 respectively.int(r[0]) is variable in which a value is stored.
import cv2
img = cv2.imread('xyz.png')
t = img.shape
print(t)
component = 2
img.itemset((0,0,component),int(r[0]))
img.itemset((0,t[1]-1,component),int(r[1]))
img.itemset((t[0]-1,0,component),int(r[2]))
img.itemset((t[0]-1,t[1]-1,component),int(r[3]))
print(img.item(0,0,component))
print(img.item(0,t[1]-1,component))
print(img.item(t[0]-1,0,component))
print(img.item(t[0]-1,t[1]-1,component))
cv2.imwrite('output.png',img)

Remove background of the image using opencv Python

I have two images, one with only background and the other with background + detectable object (in my case its a car). Below are the images
I am trying to remove the background such that I only have car in the resulting image. Following is the code that with which I am trying to get the desired results
import numpy as np
import cv2
original_image = cv2.imread('IMG1.jpg', cv2.IMREAD_COLOR)
gray_original = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)
background_image = cv2.imread('IMG2.jpg', cv2.IMREAD_COLOR)
gray_background = cv2.cvtColor(background_image, cv2.COLOR_BGR2GRAY)
foreground = np.absolute(gray_original - gray_background)
foreground[foreground > 0] = 255
cv2.imshow('Original Image', foreground)
cv2.waitKey(0)
The resulting image by subtracting the two images is
Here is the problem. The expected resulting image should be a car only.
Also, If you take a deep look in the two images, you'll see that they are not exactly same that is, the camera moved a little so background had been disturbed a little. My question is that with these two images how can I subtract the background. I do not want to use grabCut or backgroundSubtractorMOG algorithm right now because I do not know right now whats going on inside those algorithms.
What I am trying to do is to get the following resulting image
Also if possible, please guide me with a general way of doing this not only in this specific case that is, I have a background in one image and background+object in the second image. What could be the best possible way of doing this. Sorry for such a long question.
I solved your problem using the OpenCV's watershed algorithm. You can find the theory and examples of watershed here.
First I selected several points (markers) to dictate where is the object I want to keep, and where is the background. This step is manual, and can vary a lot from image to image. Also, it requires some repetition until you get the desired result. I suggest using a tool to get the pixel coordinates.
Then I created an empty integer array of zeros, with the size of the car image. And then I assigned some values (1:background, [255,192,128,64]:car_parts) to pixels at marker positions.
NOTE: When I downloaded your image I had to crop it to get the one with the car. After cropping, the image has size of 400x601. This may not be what the size of the image you have, so the markers will be off.
Afterwards I used the watershed algorithm. The 1st input is your image and 2nd input is the marker image (zero everywhere except at marker positions). The result is shown in the image below.
I set all pixels with value greater than 1 to 255 (the car), and the rest (background) to zero. Then I dilated the obtained image with a 3x3 kernel to avoid losing information on the outline of the car. Finally, I used the dilated image as a mask for the original image, using the cv2.bitwise_and() function, and the result lies in the following image:
Here is my code:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Load the image
img = cv2.imread("/path/to/image.png", 3)
# Create a blank image of zeros (same dimension as img)
# It should be grayscale (1 color channel)
marker = np.zeros_like(img[:,:,0]).astype(np.int32)
# This step is manual. The goal is to find the points
# which create the result we want. I suggest using a
# tool to get the pixel coordinates.
# Dictate the background and set the markers to 1
marker[204][95] = 1
marker[240][137] = 1
marker[245][444] = 1
marker[260][427] = 1
marker[257][378] = 1
marker[217][466] = 1
# Dictate the area of interest
# I used different values for each part of the car (for visibility)
marker[235][370] = 255 # car body
marker[135][294] = 64 # rooftop
marker[190][454] = 64 # rear light
marker[167][458] = 64 # rear wing
marker[205][103] = 128 # front bumper
# rear bumper
marker[225][456] = 128
marker[224][461] = 128
marker[216][461] = 128
# front wheel
marker[225][189] = 192
marker[240][147] = 192
# rear wheel
marker[258][409] = 192
marker[257][391] = 192
marker[254][421] = 192
# Now we have set the markers, we use the watershed
# algorithm to generate a marked image
marked = cv2.watershed(img, marker)
# Plot this one. If it does what we want, proceed;
# otherwise edit your markers and repeat
plt.imshow(marked, cmap='gray')
plt.show()
# Make the background black, and what we want to keep white
marked[marked == 1] = 0
marked[marked > 1] = 255
# Use a kernel to dilate the image, to not lose any detail on the outline
# I used a kernel of 3x3 pixels
kernel = np.ones((3,3),np.uint8)
dilation = cv2.dilate(marked.astype(np.float32), kernel, iterations = 1)
# Plot again to check whether the dilation is according to our needs
# If not, repeat by using a smaller/bigger kernel, or more/less iterations
plt.imshow(dilation, cmap='gray')
plt.show()
# Now apply the mask we created on the initial image
final_img = cv2.bitwise_and(img, img, mask=dilation.astype(np.uint8))
# cv2.imread reads the image as BGR, but matplotlib uses RGB
# BGR to RGB so we can plot the image with accurate colors
b, g, r = cv2.split(final_img)
final_img = cv2.merge([r, g, b])
# Plot the final result
plt.imshow(final_img)
plt.show()
If you have a lot of images you will probably need to create a tool to annotate the markers graphically, or even an algorithm to find markers automatically.
The problem is that you're subtracting arrays of unsigned 8 bit integers. This operation can overflow.
To demonstrate
>>> import numpy as np
>>> a = np.array([[10,10]],dtype=np.uint8)
>>> b = np.array([[11,11]],dtype=np.uint8)
>>> a - b
array([[255, 255]], dtype=uint8)
Since you're using OpenCV, the simplest way to achieve your goal is to use cv2.absdiff().
>>> cv2.absdiff(a,b)
array([[1, 1]], dtype=uint8)
I recommend using OpenCV's grabcut algorithm. You first draw a few lines on the foreground and background, and keep doing this until your foreground is sufficiently separated from the background. It is covered here: https://docs.opencv.org/trunk/d8/d83/tutorial_py_grabcut.html
as well as in this video: https://www.youtube.com/watch?v=kAwxLTDDAwU

Using OpenCV Python, How would you make all black pixels transparent, and then overlay it over original image

I'm trying to make a colored mask, white.
And my idea is to:
make black pixels transparent in the mask
merge the two images
crop images
so then my original masked area will be white.
What kind of OpenCV python code/methods would I need?
Like so:
Original
Mask
Desired result (mocked up - no green edges)
Instead of
I suppose to do a color threshold to get the mask itself.
The result I got in a first quick and dirty attempt with Hue 43-81, Saturation 39-197 and Brightness from 115-255 is:
The next step is a whole fill algorithm to fill the inside of the mask. Note that also one small area to the right is selected.
The next step is a substraction of the two results (mask-filled_mask):
Again fill the wholes and get rid of the noisy pixels with binary opening:
Last mask the image with the created mask.
Every step can be adjusted to yield optimal results. A good idea is to try the steps out (for example with imageJ) to get your workflow set up and then script the steps in python/openCV.
Refer also to http://fiji.sc/Segmentation.
I am assuming your mask is a boolean numpy array and your 2 images are numpy arrays image1 and image2.
Then you can use the boolean array as multiplier.
overlay= mask*image1 + (-mask)*image2
So you get the "True" pixels from image1 and the False pixels from image2

Categories