variable increment in python beginner error - python

I am trying to increment the counter each time it detects an object.
count=0
def detect_and_draw(img, cascade):
# allocate temporary images
gray = cv.CreateImage((img.width,img.height), 8, 1)
small_img = cv.CreateImage((cv.Round(img.width / image_scale),
cv.Round (img.height / image_scale)), 8, 1)
# convert color input image to grayscale
cv.CvtColor(img, gray, cv.CV_BGR2GRAY)
# scale input image for faster processing
cv.Resize(gray, small_img, cv.CV_INTER_LINEAR)
cv.EqualizeHist(small_img, small_img)
if(cascade):
t = cv.GetTickCount()
faces = cv.HaarDetectObjects(small_img, cascade, cv.CreateMemStorage(0),
haar_scale, min_neighbors, haar_flags, min_size)
t = cv.GetTickCount() - t
print "time taken for detection = %gms" % (t/(cv.GetTickFrequency()*1000.))
if faces:
for ((x, y, w, h), n) in faces:
# the input to cv.HaarDetectObjects was resized, so scale the
# bounding box of each face and convert it to two CvPoints
pt1 = (int(x * image_scale), int(y * image_scale))
pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
cv.Rectangle(img, pt1, pt2, cv.RGB(255, 0, 0), 3, 8, 0)
count += 1
print count
But I can't get why it has this error .I tried to do the increment just after if but still same error. It's the first time to use python so I can't get the scoping rules. what should I modify?
File "detect.py", line 42, in detect_and_draw
count +=1
UnboundLocalError: local variable 'count' referenced before assignment

You have a global count. The function doesn't know it.
def detect_and_draw(img, cascade):
global count

Related

how to crop image using yolo format image coordinate

Greeting stackoverflow community,
I have 200 images with labelled txt file for yolo custom model.
Now I want to crop all the heads present in those images using txt coordinate.
I have tried with opencv.
But I am getting error.
Could you please help me to crop all the heads of those images automatically?
Please see the update code :
import cv2
img = cv2.imread(<image path>)
dh, dw, _ = img.shape
print(dh,dw)
x,y,w,h = 0.360667, 0.089000, 0.113333, 0.130000
x,y,w,h = int(x*dw), int(y*dh), int(w*dw), int(h*dh)
print(x, y, w, h)
imgCrop = img[y:y+h,x:x+w]
cv2.imshow("Crop Image",imgCrop)
cv2.waitKey(0)
For better understanding the problem, please see these images :
# Resource: https://github.com/AlexeyAB/darknet
# <x_center> <y_center> <width> <height> - float values relative to width and height of image,
# it can be equal from (0.0 to 1.0]
# <x> = <absolute_x> / <image_width>
# <height> = <absolute_height> / <image_height>
# attention: <x_center> <y_center> - are center of rectangle (are not top-left corner)
box = "1 0.615234 0.254688 0.148438 0.178125"
class_id, x_center, y_center, w, h = box.strip().split()
x_center, y_center, w, h = float(x_center), float(y_center), float(w), float(h)
x_center = round(x_center * dw)
y_center = round(y_center * dh)
w = round(w * dw)
h = round(h * dh)
x = round(x_center - w / 2)
y = round(y_center - h / 2)
imgCrop = img[y:y + h, x:x + w]
You need to convert those float values to integers. You would do this by multiplying them by the width and height of the image then casting them to ints.
Example:
x,y,h,w = int(x*img_width), int(y*img_height), int(h*img_higth), int(w*img_width)
Then index the image:
imgCrop = img[x:x+w, y:y+h]

UnboundLocalError when two faces appear on input

def face_detect(img):
hog_rects = hog_detector(img, 0)
hog_faces = np.zeros((0, 4), dtype=int)
for (i, rect) in enumerate(hog_rects):
(x, y, w, h) = rect_to_bb(rect)
face = np.asarray((x, y, w, h), dtype=int)
hog_faces = np.append(hog_faces, [face], axis=0)
return hog_faces
def detect(img, cascade, minimumFeatureSize=(20, 20)):
if cascade.empty():
raise (Exception("There was a problem loading your Haar Cascade xml file."))
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=1, minSize=minimumFeatureSize)
if len(rects) == 0:
return []
rects[:, 2:] += rects[:, :2] # convert last coord from (width,height) to (maxX, maxY)
return rects
def eye_detect(faces, gray, minEyeSize):
# eyes = np.zeros((0, 4), dtype=int)
for (x, y, w, h) in faces:
roi_gray = gray[y:h, x:w]
detected_eyes = detect(roi_gray, haarEyeCascade, minEyeSize)
eyeFix = detected_eyes + [x, y, x, y]
# eyes = np.append(eyes, eyeFix, axis=0)
return eyeFix
I use the above function for dlib_face detector and loop through the detected faces to find eyes with the eye_detect function using OpenCV haar eyecascade. The input is VideoCapture input from OpenCV. The output of all the functions is a numpy array containing min x, min y max x, max y of the detected feature.
If there is only one face the code works fine. But as soon as a second face comes, it throws
UnboundLocalError: local variable 'eyeFix' referenced before assignment
I want it to only detect eyes on the existing face and not on new faces. What can I do to improve this code?

Making Automatic Annotiation tool

i ma trying to make an automatic annotiation tool for yolo object detection which useses previosly trained model to find the detections , and i managed to put together some code but i am stuck a little, as far as i know this needs to be the annotation format for YOLO:
18 0.154167 0.431250 0.091667 0.612500
And with my code i get
0.5576068858305613, 0.5410404056310654, -0.7516528169314066, 0.33822181820869446
I am not sure why i get the - at the third number and if i need to shorten my float number,
I will post the code below if someone could help me , after completing this project i will post the whole code if someone wants to use it
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
The above code is the function that converts the coordinates for YOLO format , For the size you need to pass the (w,h) and the for the box you need to pass (x,x+w, y, y+h)
net = cv2.dnn.readNetFromDarknet(config_path, weights_path)
# path_name = "images/city_scene.jpg"
path_name = image
image = cv2.imread(path_name)
file_name = os.path.basename(path_name)
filename, ext = file_name.split(".")
h, w = image.shape[:2]
# create 4D blob
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
# sets the blob as the input of the network
net.setInput(blob)
# get all the layer names
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# feed forward (inference) and get the network output
# measure how much it took in seconds
start = time.perf_counter()
layer_outputs = net.forward(ln)
time_took = time.perf_counter() - start
print(f"Time took: {time_took:.2f}s")
boxes, confidences, class_ids = [], [], []
b=[]
a=[]
# loop over each of the layer outputs
for output in layer_outputs:
# loop over each of the object detections
for detection in output:
# extract the class id (label) and confidence (as a probability) of
# the current object detection
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
# discard weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > CONFIDENCE:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([w, h, w, h])
(centerX, centerY, width, height) = box.astype("float")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
a = w, h
convert(a, box)
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
class_ids.append(class_id)
idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD,
IOU_THRESHOLD)
font_scale = 1
thickness = 1
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
x, y = boxes[i][0], boxes[i][1]
w, h = boxes[i][2], boxes[i][3]
# draw a bounding box rectangle and label on the image
color = [int(c) for c in colors[class_ids[i]]]
ba=w,h
print(w,h)
cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness)
text = "{}".format(labels[class_ids[i]])
conf = "{:.3f}".format(confidences[i], x, y)
int1, int2 = (x, y)
print(text)
#print(convert(ba, box))
#b=w,h
#print(convert(b, boxes))
#print(convert(a, box)) #coordinates
ivan = str(int1)
b.append([text, ivan])
#a.append(float(conf))
#print(a)
# calculate text width & height to draw the transparent boxes as background of the text
(text_width, text_height) = \
cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0]
text_offset_x = x
text_offset_y = y - 5
box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))
overlay = image.copy()
cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)
# add opacity (transparency to the box)
image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)
# now put the text (label: confidence %)
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale, color=(0, 0, 0), thickness=thickness)
text = "{}".format(labels[class_ids[i]],x,y)
conf = "{:.3f}".format(confidences[i])
the problem is the indexes in your function.
box[0]=>center x
box[1]=>center y
box[2]=>width of your bbox
box[3]=>height of your bbox
and according to the document, yolo labels are like this :
<object-class> <x> <y> <width> <height>
which x and y are the center of the bounding box.so your code should be like this :
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = box[0]*dw
y = box[1]*dh
w = box[2]*dw
h = box[3]*dh
return (x,y,w,h)
Maybe this can help you
def bounding_box_2_yolo(obj_detections, frame, index):
yolo_info = []
for object_det in obj_detections:
left_x, top_y, right_x, bottom_y = object_det.boxes
xmin = left_x
xmax = right_x
ymin = top_y
ymax = bottom_y
xcen = float((xmin + xmax)) / 2 / frame.shape[1]
ycen = float((ymin + ymax)) / 2 / frame.shape[0]
w = float((xmax - xmin)) / frame.shape[1]
h = float((ymax - ymin)) / frame.shape[0]
yolo_info.append((index, xcen, ycen, w, h))
return yolo_info
The labelimg has a lot of things that you can use too
https://github.com/tzutalin/labelImg/blob/master/libs/yolo_io.py

Is there any function in openCV or another library that can tile squares within an arbitrary contour?

I have images where I've found some contours around dogs, e.g.:
I want to tile squares/rectangles inside of the contour. Is there an openCV (or other library) function for this? I'm using Python. I'd like it to look something like this:
I was able to solve this by first drawing rectangles over the entire image, then checking which ones were in the area with the dog:
# the image here is stored as the variable fg
# with b, g, r, and alpha channels
# the alpha channel is masking the dog part of the image
import cv2
b, g, r, a = cv2.split(fg)
fgcp = fg.copy()
h, w = fg.shape[:2]
h -= 1
w -= 1 # avoid indexing error
rectDims = [10, 10] # w, h of rectangles
hRects = h / rectDims[0]
wRects = w / rectDims[1]
for i in range(wRects):
for j in range(hRects):
pt1 = (i * rectDims[0], j * rectDims[1])
pt2 = ((i + 1) * rectDims[0], (j + 1) * rectDims[1])
# alpha is 255 over the part of the dog
if a[pt1[1], pt1[0]] == 255 and a[pt2[1], pt2[0]] == 255:
cv2.rectangle(fgcp, pt1, pt2, [0, 0, 255], 2)
cv2.imshow('', fgcp), cv2.waitKey(0)
It's not necessarily the ideal implementation, but it works well enough.

overlay a smaller image on a larger image python OpenCv

Hi I am creating a program that replaces a face in a image with someone else's face. However, I am stuck on trying to insert the new face into the original, larger image. I have researched ROI and addWeight(needs the images to be the same size) but I haven't found a way to do this in python. Any advise is great. I am new to opencv.
I am using the following test images:
smaller_image:
larger_image:
Here is my Code so far... a mixer of other samples:
import cv2
import cv2.cv as cv
import sys
import numpy
def detect(img, cascade):
rects = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=3, minSize=(10, 10), flags = cv.CV_HAAR_SCALE_IMAGE)
if len(rects) == 0:
return []
rects[:,2:] += rects[:,:2]
return rects
def draw_rects(img, rects, color):
for x1, y1, x2, y2 in rects:
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
if __name__ == '__main__':
if len(sys.argv) != 2: ## Check for error in usage syntax
print "Usage : python faces.py <image_file>"
else:
img = cv2.imread(sys.argv[1],cv2.CV_LOAD_IMAGE_COLOR) ## Read image file
if (img == None):
print "Could not open or find the image"
else:
cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
gray = cv2.cvtColor(img, cv.CV_BGR2GRAY)
gray = cv2.equalizeHist(gray)
rects = detect(gray, cascade)
## Extract face coordinates
x1 = rects[0][3]
y1 = rects[0][0]
x2 = rects[0][4]
y2 = rects[0][5]
y=y2-y1
x=x2-x1
## Extract face ROI
faceROI = gray[x1:x2, y1:y2]
## Show face ROI
cv2.imshow('Display face ROI', faceROI)
small = cv2.imread("average_face.png",cv2.CV_LOAD_IMAGE_COLOR)
print "here"
small=cv2.resize(small, (x, y))
cv2.namedWindow('Display image') ## create window for display
cv2.imshow('Display image', small) ## Show image in the window
print "size of image: ", img.shape ## print size of image
cv2.waitKey(1000)
A simple way to achieve what you want:
import cv2
s_img = cv2.imread("smaller_image.png")
l_img = cv2.imread("larger_image.jpg")
x_offset=y_offset=50
l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img
Update
I suppose you want to take care of the alpha channel too. Here is a quick and dirty way of doing so:
s_img = cv2.imread("smaller_image.png", -1)
y1, y2 = y_offset, y_offset + s_img.shape[0]
x1, x2 = x_offset, x_offset + s_img.shape[1]
alpha_s = s_img[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s
for c in range(0, 3):
l_img[y1:y2, x1:x2, c] = (alpha_s * s_img[:, :, c] +
alpha_l * l_img[y1:y2, x1:x2, c])
Using #fireant's idea, I wrote up a function to handle overlays. This works well for any position argument (including negative positions).
def overlay_image_alpha(img, img_overlay, x, y, alpha_mask):
"""Overlay `img_overlay` onto `img` at (x, y) and blend using `alpha_mask`.
`alpha_mask` must have same HxW as `img_overlay` and values in range [0, 1].
"""
# Image ranges
y1, y2 = max(0, y), min(img.shape[0], y + img_overlay.shape[0])
x1, x2 = max(0, x), min(img.shape[1], x + img_overlay.shape[1])
# Overlay ranges
y1o, y2o = max(0, -y), min(img_overlay.shape[0], img.shape[0] - y)
x1o, x2o = max(0, -x), min(img_overlay.shape[1], img.shape[1] - x)
# Exit if nothing to do
if y1 >= y2 or x1 >= x2 or y1o >= y2o or x1o >= x2o:
return
# Blend overlay within the determined ranges
img_crop = img[y1:y2, x1:x2]
img_overlay_crop = img_overlay[y1o:y2o, x1o:x2o]
alpha = alpha_mask[y1o:y2o, x1o:x2o, np.newaxis]
alpha_inv = 1.0 - alpha
img_crop[:] = alpha * img_overlay_crop + alpha_inv * img_crop
Example usage:
import numpy as np
from PIL import Image
# Prepare inputs
x, y = 50, 0
img = np.array(Image.open("img_large.jpg"))
img_overlay_rgba = np.array(Image.open("img_small.png"))
# Perform blending
alpha_mask = img_overlay_rgba[:, :, 3] / 255.0
img_result = img[:, :, :3].copy()
img_overlay = img_overlay_rgba[:, :, :3]
overlay_image_alpha(img_result, img_overlay, x, y, alpha_mask)
# Save result
Image.fromarray(img_result).save("img_result.jpg")
Result:
If you encounter errors or unusual outputs, please ensure:
img should not contain an alpha channel. (e.g. If it is RGBA, convert to RGB first.)
img_overlay has the same number of channels as img.
Based on fireant's excellent answer above, here is the alpha blending but a bit more human legible. You may need to swap 1.0-alpha and alpha depending on which direction you're merging (mine is swapped from fireant's answer).
o* == s_img.*
b* == b_img.*
for c in range(0,3):
alpha = s_img[oy:oy+height, ox:ox+width, 3] / 255.0
color = s_img[oy:oy+height, ox:ox+width, c] * (1.0-alpha)
beta = l_img[by:by+height, bx:bx+width, c] * (alpha)
l_img[by:by+height, bx:bx+width, c] = color + beta
Here it is:
def put4ChannelImageOn4ChannelImage(back, fore, x, y):
rows, cols, channels = fore.shape
trans_indices = fore[...,3] != 0 # Where not transparent
overlay_copy = back[y:y+rows, x:x+cols]
overlay_copy[trans_indices] = fore[trans_indices]
back[y:y+rows, x:x+cols] = overlay_copy
#test
background = np.zeros((1000, 1000, 4), np.uint8)
background[:] = (127, 127, 127, 1)
overlay = cv2.imread('imagee.png', cv2.IMREAD_UNCHANGED)
put4ChannelImageOn4ChannelImage(background, overlay, 5, 5)
A simple function that blits an image front onto an image back and returns the result. It works with both 3 and 4-channel images and deals with the alpha channel. Overlaps are handled as well.
The output image has the same size as back, but always 4 channels.
The output alpha channel is given by (u+v)/(1+uv) where u,v are the alpha channels of the front and back image and -1 <= u,v <= 1. Where there is no overlap with front, the alpha value from back is taken.
import cv2
def merge_image(back, front, x,y):
# convert to rgba
if back.shape[2] == 3:
back = cv2.cvtColor(back, cv2.COLOR_BGR2BGRA)
if front.shape[2] == 3:
front = cv2.cvtColor(front, cv2.COLOR_BGR2BGRA)
# crop the overlay from both images
bh,bw = back.shape[:2]
fh,fw = front.shape[:2]
x1, x2 = max(x, 0), min(x+fw, bw)
y1, y2 = max(y, 0), min(y+fh, bh)
front_cropped = front[y1-y:y2-y, x1-x:x2-x]
back_cropped = back[y1:y2, x1:x2]
alpha_front = front_cropped[:,:,3:4] / 255
alpha_back = back_cropped[:,:,3:4] / 255
# replace an area in result with overlay
result = back.copy()
print(f'af: {alpha_front.shape}\nab: {alpha_back.shape}\nfront_cropped: {front_cropped.shape}\nback_cropped: {back_cropped.shape}')
result[y1:y2, x1:x2, :3] = alpha_front * front_cropped[:,:,:3] + (1-alpha_front) * back_cropped[:,:,:3]
result[y1:y2, x1:x2, 3:4] = (alpha_front + alpha_back) / (1 + alpha_front*alpha_back) * 255
return result
For just add an alpha channel to s_img I just use cv2.addWeighted before the line
l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img
as following:
s_img=cv2.addWeighted(l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]],0.5,s_img,0.5,0)
When attempting to write to the destination image using any of these answers above and you get the following error:
ValueError: assignment destination is read-only
A quick potential fix is to set the WRITEABLE flag to true.
img.setflags(write=1)
A simple 4on4 pasting function that works-
def paste(background,foreground,pos=(0,0)):
#get position and crop pasting area if needed
x = pos[0]
y = pos[1]
bgWidth = background.shape[0]
bgHeight = background.shape[1]
frWidth = foreground.shape[0]
frHeight = foreground.shape[1]
width = bgWidth-x
height = bgHeight-y
if frWidth<width:
width = frWidth
if frHeight<height:
height = frHeight
# normalize alpha channels from 0-255 to 0-1
alpha_background = background[x:x+width,y:y+height,3] / 255.0
alpha_foreground = foreground[:width,:height,3] / 255.0
# set adjusted colors
for color in range(0, 3):
fr = alpha_foreground * foreground[:width,:height,color]
bg = alpha_background * background[x:x+width,y:y+height,color] * (1 - alpha_foreground)
background[x:x+width,y:y+height,color] = fr+bg
# set adjusted alpha and denormalize back to 0-255
background[x:x+width,y:y+height,3] = (1 - (1 - alpha_foreground) * (1 - alpha_background)) * 255
return background
I reworked #fireant's concept to allow for optional alpha masks and allow any x or y, including values outside of the bounds of the image. It will crop to the bounds.
def overlay_image_alpha(img, img_overlay, x, y, alpha_mask=None):
"""Overlay `img_overlay` onto `img` at (x, y) and blend using optional `alpha_mask`.
`alpha_mask` must have same HxW as `img_overlay` and values in range [0, 1].
"""
if y < 0 or y + img_overlay.shape[0] > img.shape[0] or x < 0 or x + img_overlay.shape[1] > img.shape[1]:
y_origin = 0 if y > 0 else -y
y_end = img_overlay.shape[0] if y < 0 else min(img.shape[0] - y, img_overlay.shape[0])
x_origin = 0 if x > 0 else -x
x_end = img_overlay.shape[1] if x < 0 else min(img.shape[1] - x, img_overlay.shape[1])
img_overlay_crop = img_overlay[y_origin:y_end, x_origin:x_end]
alpha = alpha_mask[y_origin:y_end, x_origin:x_end] if alpha_mask is not None else None
else:
img_overlay_crop = img_overlay
alpha = alpha_mask
y1 = max(y, 0)
y2 = min(img.shape[0], y1 + img_overlay_crop.shape[0])
x1 = max(x, 0)
x2 = min(img.shape[1], x1 + img_overlay_crop.shape[1])
img_crop = img[y1:y2, x1:x2]
img_crop[:] = alpha * img_overlay_crop + (1.0 - alpha) * img_crop if alpha is not None else img_overlay_crop

Categories