suppose I want to plot 2 histogram subplots on the same window in python, one below the next. The data from these histograms will be read from a file containing a table with attributes A and B.
In the same window, I need a plot of A vs the number of each A and a plot of B vs the number of each B - directly below the plot of A. so suppose the attributes were height and weight, then we'd have a graph of height and number of people with said height and below it a separate graph of weight and number of people with said weight.
import numpy as np; import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
frame = pd.read_csv('data.data', header=None)
subplot.hist(frame['A'], frame['A.count()'])
subplot.hist(frame['B'], frame['B.count()'])
Thanks for any help!
Using pandas you can make histograms like this:
import numpy as np; import pandas as pd
import matplotlib.pyplot as plt
frame = pd.read_csv('data.csv')
frame.hist(layout = (2,1))
plt.show()
I'm confused by the second part of the question. Do you want four separate subplots?
You can do this:
import numpy as np
import numpy.random
import pandas as pd
import matplotlib.pyplot as plt
#df = pd.read_csv('data.data', header=None)
df = pd.DataFrame({'A': numpy.random.random_integers(0,10,30),
'B': numpy.random.random_integers(0,10,30)})
print df['A']
ax1 = plt.subplot(211)
ax1.set_title('A')
ax1.set_ylabel('number of people')
ax1.set_xlabel('height')
ax2 = plt.subplot(212)
ax2.set_title('B')
ax2.set_ylabel('number of people')
ax2.set_xlabel('weight')
ax1.hist(df['A'])
ax2.hist(df['B'])
plt.tight_layout()
plt.show()
Related
When I run the code below I notice that the heatmap does not have a square shape knowing that I have used square=True but it did not work! Any idea how can I print the heatmap in a square format? Thank you!
The code:
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib as plt
import os
import seaborn as sns
temp_hourly_A5_A7_AX_ASHRAE=pd.read_csv('C:\\Users\\cvaa4\\Desktop\\projects\\s\\temp_hourly_A5_A7_AX_ASHRAE.csv',index_col=0, parse_dates=True, dayfirst=True, skiprows=2)
sns.heatmap(temp_hourly_A5_A7_AX_ASHRAE,cmap="YlGnBu", vmin=18, vmax=27, square=True, cbar=False, linewidth=0.0001);
The result:
square=True should work to have square cells, below is a working example:
import pandas as pd
import numpy as np
import seaborn as sns
df = pd.DataFrame(np.tile([0,1], 15*15).reshape(-1,15))
sns.heatmap(df, square=True)
If you want a square shape of the plot however, you can use set_aspect and the shape of the data:
ax = sns.heatmap(df)
ax.set_aspect(df.shape[1]/df.shape[0]) # here 0.5 Y/X ratio
You can use matplotlib and set a figsize before plotting heatmap.
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
rnd = np.random.default_rng(12345)
data = rnd.uniform(-100, 100, [100, 50])
plt.figure(figsize=(6, 5))
sns.heatmap(data, cmap='viridis');
Note that I used figsize=(6, 5) rather than a square figsize=(5, 5). This is because on a given figsize, seaborn also puts the colorbar, which might cause the heatmap to be squished a bit. You might want to change those figsizes too depending on what you need.
I want to plot a tendency line on top of a data plot. This must be simple but I have not been able to figure out how to get to it.
Let us say I have the following:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame(np.random.randint(0,100,size=(100, 1)), columns=list('A'))
sns.lineplot(data=df)
ax.set(xlabel="Index",
ylabel="Variable",
title="Sample")
plt.show()
The resulting plot is:
What I would like to add is a tendency line. Something like the red line in the following:
I thank you for any feedback.
A moving average is one method (my first thought, and already suggested).
Another method is to use a polynomial fit. Since you had 100 points in your original data, I picked a 10th order fit (square root of data length) in the example below. With some modification of your original code:
idx = [i for i in range(100)]
rnd = np.random.randint(0,100,size=100)
ser = pd.Series(rnd, idx)
fit = np.polyfit(idx, rnd, 10)
pf = np.poly1d(fit)
plt.plot(idx, rnd, 'b', idx, pf(idx), 'r')
This code provides a plot like this:
You can do something like this using Rolling Average:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data = np.random.randint(0,100,size=(100, 1))
df["rolling_avg"] = df.A.rolling(7).mean().shift(-3)
sns.lineplot(data=df)
plt.show()
You could also do a Regression plot to analyse how data can be interpolated using:
ax = sns.regplot(x=df.index, y="A",
data=df,
scatter_kws={"s": 10},
order=10,
ci=None)
I am trying to make a Box and Whisker plot on my dataset that looks something like this -
& the chart I'm trying to make
My current lines of code are below -
import seaborn as sns
import matplotlib.pyplot as plt
d = df3.boxplot(column = ['Northern California','New York','Kansas','Texas'], by = 'Banner')
d
Thank you
I've recreated a dummy version of your dataset:
import numpy as np
import pandas as pd
dictionary = {'Banner':['Type1']*10+['Type2']*10,
'Northen_californina':np.random.rand(20),
'Texas':np.random.rand(20)}
df = pd.DataFrame(dictionary)
What you need is to melt your dataframe (unpivot) in orther to have the information of geographical zone stored in a column and not as column name. You can use pandas.melt method and specify all the columns you want to put in your boxplot in the value_vars argument.
With my dummy dataset you can do this:
df = pd.melt(df,id_vars=['Banner'],value_vars=['Northen_californina','Texas'],
var_name='zone', value_name='amount')
Now you can apply a boxplot using the hue argument:
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(9,9)) #for a bigger image
sns.boxplot(x="Banner", y="amount", hue="zone", data=df, palette="Set1")
I have pandas series of complex numbers, which I would like to plot. Currently, I am looping through each point and assigning it a color. I would prefer to generate the plot without the need to loop over each point... Using Series.plot() would be preferable. Converting series to numpy is ok though.
Here is an example of what I currently have:
import pandas as pd
import numpy as np
from matplotlib import pyplot
s = pd.Series((1+np.random.randn(500)*0.05)*np.exp(1j*np.linspace(-np.pi, np.pi, 500)))
cmap = pyplot.cm.viridis
for i, val in enumerate(s):
pyplot.plot(np.real(val), np.imag(val), 'o', ms=10, color=cmap(i/(len(s)-1)))
pyplot.show()
You can use pyplot.scatter, which allows coloring of points based on a value.
pyplot.scatter(np.real(s), np.imag(s), s=50, c=np.arange(len(s)), cmap='viridis')
Here, we set c to an increasing sequence to get the same result as in the question.
You can simply plot the real and imaginary part of the series without a loop.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
s = pd.Series((1+np.random.randn(500)*0.05)*np.exp(1j*np.linspace(-np.pi, np.pi, 500)))
plt.plot(s.values.real,s.values.imag, marker="o", ls="")
plt.show()
However, you need to use a scatter plot if you want to have different colors:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
s = pd.Series((1+np.random.randn(500)*0.05)*np.exp(1j*np.linspace(-np.pi, np.pi, 500)))
plt.scatter(s.values.real,s.values.imag, c = range(len(s)), cmap=plt.cm.viridis)
plt.show()
I have data from two sensors that I want to visualize. Both sensors take only 0/1 values. How can I change the xaxis labels to show the time series and y axis should have 2 labels 0 and 1 representing the value of sensors along the time series.
import pandas as pd
import matplotlib.pyplot as plt
def drawgraph(inputFile):
df=pd.read_csv(inputFile)
fig=plt.figure()
ax=fig.add_subplot(111)
y = df[['sensor1']]
x=df.index
plt.plot(x,y)
plt.show()
You should have explained what you tried before asking a question for this to be meaningful. Anyway, below is the example.
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
trange = pd.date_range("11:00", "21:30", freq="30min")
df = pd.DataFrame({'time':trange,'sensor1':np.round(np.random.rand(len(trange))),\
'sensor2':np.round(np.random.rand(len(trange)))})
df = df.set_index('time')
df.plot(yticks=[0,1],ylim=[-0.1,1.1],style={'sensor1':'ro','sensor2':'bx'})