python watchdog for threads - python

Im writing simple app, which reads (about a million) lines from file, copy those lines into list, and if next line will be different then previous it runs a thread, to do some job with that list. Thread job is based on tcp sockets, sending and receiving commands via telnet lib.
Sometimes my application hangs and does nothing. All telnet operations I wrapped into try-except statements, also read and write into sockets has timeouts.
I thought about writing watchdog, which will do sys.exit() or something similiar on that hang condtition. But, for now I'm thinking how to create it, and still got no idea how to do it. So if You can trace me, it would be great.
For that file I'm creating 40 threads. Pseudo code looks:
lock = threading.Lock()
no_of_jobs = 0
class DoJob(threading.Thread):
def start(self, cond, work):
self.work = work
threading.Thread.start(self)
def run(self)
global lock
global no_of_jobs
lock.acquire()
no_of_jobs += 1
lock.release()
# do some job, if error or if finished, decrement no_of_jobs under lock
(...)
main:
#starting conditions:
with open(sys.argv[1]) as targetsfile:
head = [targetsfile.next() for x in xrange(1)]
s = head[0]
prev_cond = s[0]
work = []
for line in open(sys.argv[1], "r"):
cond = line([0])
if prev_cond != cond:
while(no_of_jobs>= MAX_THREADS):
time.sleep(1)
DoJob(cond, work)
prev_cond = cond
work = None
work = []
work.append(line)
#last job:
DoJob(cond, work)
while threading.activeCount() > 1:
time.sleep(1)
best regards
J

I have successfully used code like below in the past (from a python 3 program I wrote):
import threading
def die():
print('ran for too long. quitting.')
for thread in threading.enumerate():
if thread.isAlive():
try:
thread._stop()
except:
pass
sys.exit(1)
if __name__ == '__main__':
#bunch of app-specific code...
# setup max runtime
die = threading.Timer(2.0, die) #quit after 2 seconds
die.daemon = True
die.start()
#after work is done
die.cancel()

Related

Python Multi Threading not working properly

I can't seem to get this Multi Threading code to work with my already structured Python script of a simple IP Pining script with a few other features.
After testing the Multi Threading code i though i was ready to implement onto my code, however i can't seem to be able to call a new thread correctly. I know this because if Multi Threading was working properly my GUI interface would not stop responding when the scanall() function gets executed upon pressing the Scan all IPs button on the GUI interface.
I'm also not getting anymore errors after finishing the implementation, so it's hard to know now what to proceed with. This extremely frustrating thank you for the help guys, i would love to tackle this one down!
This is the Multi Threading code:
class ThreadManager:
"""Multi Threading manager"""
def __init__(self):
pass
def start(self, threads):
thread_refs = []
for i in range(threads):
t = MyThread(i) # Thread(args=(1,)) # target=test(),
t.daemon = True
print('starting thread %i' % i)
t.start()
for t in thread_refs:
t.join()
class MyThread(Thread):
"""Multi Threading"""
def __init__(self, i):
Thread.__init__(self)
self.i = i
def run(self):
while True:
print('thread # {}'.format(self.i))
time.sleep(.25)
break
And This is the code that executes the multi threading:
print("[Debug] Main Thread has been started")
self.manager = ThreadManager()
self.manager.start(1)
This is the Github for the entire script code and the Multi Threading implementation.
https://github.com/Hontiris1/IPPing
As you are not adding the value of t to thread_refs array. Its empty and is not waiting for the threads to join.
Change you start function like this:
def start(self, threads):
thread_refs = []
for i in range(threads):
t = MyThread(i) # Thread(args=(1,)) # target=test(),
t.daemon = True
print('starting thread %i' % i)
t.start()
thread_refs.append(t)
for t in thread_refs:
t.join()
secondly you might want to remove the break statement from your while loop in the run function. Otherwise it will exit after printing thread 0 once.

Why does my multiprocess queue not appear to be thread safe?

I am building a watchdog timer that runs another Python program, and if it fails to find a check-in from any of the threads, shuts down the whole program. This is so it will, eventually, be able to take control of needed communication ports. The code for the timer is as follows:
from multiprocessing import Process, Queue
from time import sleep
from copy import deepcopy
PATH_TO_FILE = r'.\test_program.py'
WATCHDOG_TIMEOUT = 2
class Watchdog:
def __init__(self, filepath, timeout):
self.filepath = filepath
self.timeout = timeout
self.threadIdQ = Queue()
self.knownThreads = {}
def start(self):
threadIdQ = self.threadIdQ
process = Process(target = self._executeFile)
process.start()
try:
while True:
unaccountedThreads = deepcopy(self.knownThreads)
# Empty queue since last wake. Add new thread IDs to knownThreads, and account for all known thread IDs
# in queue
while not threadIdQ.empty():
threadId = threadIdQ.get()
if threadId in self.knownThreads:
unaccountedThreads.pop(threadId, None)
else:
print('New threadId < {} > discovered'.format(threadId))
self.knownThreads[threadId] = False
# If there is a known thread that is unaccounted for, then it has either hung or crashed.
# Shut everything down.
if len(unaccountedThreads) > 0:
print('The following threads are unaccounted for:\n')
for threadId in unaccountedThreads:
print(threadId)
print('\nShutting down!!!')
break
else:
print('No unaccounted threads...')
sleep(self.timeout)
# Account for any exceptions thrown in the watchdog timer itself
except:
process.terminate()
raise
process.terminate()
def _executeFile(self):
with open(self.filepath, 'r') as f:
exec(f.read(), {'wdQueue' : self.threadIdQ})
if __name__ == '__main__':
wd = Watchdog(PATH_TO_FILE, WATCHDOG_TIMEOUT)
wd.start()
I also have a small program to test the watchdog functionality
from time import sleep
from threading import Thread
from queue import SimpleQueue
Q_TO_Q_DELAY = 0.013
class QToQ:
def __init__(self, processQueue, threadQueue):
self.processQueue = processQueue
self.threadQueue = threadQueue
Thread(name='queueToQueue', target=self._run).start()
def _run(self):
pQ = self.processQueue
tQ = self.threadQueue
while True:
while not tQ.empty():
sleep(Q_TO_Q_DELAY)
pQ.put(tQ.get())
def fastThread(q):
while True:
print('Fast thread, checking in!')
q.put('fastID')
sleep(0.5)
def slowThread(q):
while True:
print('Slow thread, checking in...')
q.put('slowID')
sleep(1.5)
def hangThread(q):
print('Hanging thread, checked in')
q.put('hangID')
while True:
pass
print('Hello! I am a program that spawns threads!\n\n')
threadQ = SimpleQueue()
Thread(name='fastThread', target=fastThread, args=(threadQ,)).start()
Thread(name='slowThread', target=slowThread, args=(threadQ,)).start()
Thread(name='hangThread', target=hangThread, args=(threadQ,)).start()
QToQ(wdQueue, threadQ)
As you can see, I need to have the threads put into a queue.Queue, while a separate object slowly feeds the output of the queue.Queue into the multiprocessing queue. If instead I have the threads put directly into the multiprocessing queue, or do not have the QToQ object sleep in between puts, the multiprocessing queue will lock up, and will appear to always be empty on the watchdog side.
Now, as the multiprocessing queue is supposed to be thread and process safe, I can only assume I have messed something up in the implementation. My solution seems to work, but also feels hacky enough that I feel I should fix it.
I am using Python 3.7.2, if it matters.
I suspect that test_program.py exits.
I changed the last few lines to this:
tq = threadQ
# tq = wdQueue # option to send messages direct to WD
t1 = Thread(name='fastThread', target=fastThread, args=(tq,))
t2 = Thread(name='slowThread', target=slowThread, args=(tq,))
t3 = Thread(name='hangThread', target=hangThread, args=(tq,))
t1.start()
t2.start()
t3.start()
QToQ(wdQueue, threadQ)
print('Joining with threads...')
t1.join()
t2.join()
t3.join()
print('test_program exit')
The calls to join() means that the test program never exits all by itself since none of the threads ever exit.
So, as is, t3 hangs and the watchdog program detects this and detects the unaccounted for thread and stops the test program.
If t3 is removed from the above program, then the other two threads are well behaved and the watchdog program allows the test program to continue indefinitely.

Multiple stdout w/ flush going on in Python threading

I have a small piece of code that I made to test out and hopefully debug the problem without having to modify the code in my main applet in Python. This has let me to build this code:
#!/usr/bin/env python
import sys, threading, time
def loop1():
count = 0
while True:
sys.stdout.write('\r thread 1: ' + str(count))
sys.stdout.flush()
count = count + 1
time.sleep(.3)
pass
pass
def loop2():
count = 0
print ""
while True:
sys.stdout.write('\r thread 2: ' + str(count))
sys.stdout.flush()
count = count + 2
time.sleep(.3)
pass
if __name__ == '__main__':
try:
th = threading.Thread(target=loop1)
th.start()
th1 = threading.Thread(target=loop2)
th1.start()
pass
except KeyboardInterrupt:
print ""
pass
pass
My goal with this code is to be able to have both of these threads displaying output in stdout format (with flushing) at the same time and have then side by side or something. problem is that I assume since it is flushing each one, it flushes the other string by default. I don't quite know how to get this to work if it is even possible.
If you just run one of the threads, it works fine. However I want to be able to run both threads with their own string running at the same time in the terminal output. Here is a picture displaying what I'm getting:
terminal screenshot
let me know if you need more info. thanks in advance.
Instead of allowing each thread to output to stdout, a better solution is to have one thread control stdout exclusively. Then provide a threadsafe channel for the other threads to dispatch data to be output.
One good method to achieve this is to share a Queue between all threads. Ensure that only the output thread is accessing data after it has been added to the queue.
The output thread can store the last message from each other thread and use that data to format stdout nicely. This can include clearing output to display something like this, and update it as each thread generates new data.
Threads
#1: 0
#2: 0
Example
Some decisions were made to simplify this example:
There are gotchas to be wary of when giving arguments to threads.
Daemon threads terminate themselves when the main thread exits. They are used to avoid adding complexity to this answer. Using them on long-running or large applications can pose problems. Other
questions discuss how to exit a multithreaded application without leaking memory or locking system resources. You will need to think about how your program needs to signal an exit. Consider using asyncio to save yourself these considerations.
No newlines are used because \r carriage returns cannot clear the whole console. They only allow the current line to be rewritten.
import queue, threading
import time, sys
q = queue.Queue()
keepRunning = True
def loop_output():
thread_outputs = dict()
while keepRunning:
try:
thread_id, data = q.get_nowait()
thread_outputs[thread_id] = data
except queue.Empty:
# because the queue is used to update, there's no need to wait or block.
pass
pretty_output = ""
for thread_id, data in thread_outputs.items():
pretty_output += '({}:{}) '.format(thread_id, str(data))
sys.stdout.write('\r' + pretty_output)
sys.stdout.flush()
time.sleep(1)
def loop_count(thread_id, increment):
count = 0
while keepRunning:
msg = (thread_id, count)
try:
q.put_nowait(msg)
except queue.Full:
pass
count = count + increment
time.sleep(.3)
pass
pass
if __name__ == '__main__':
try:
th_out = threading.Thread(target=loop_output)
th_out.start()
# make sure to use args, not pass arguments directly
th0 = threading.Thread(target=loop_count, args=("Thread0", 1))
th0.daemon = True
th0.start()
th1 = threading.Thread(target=loop_count, args=("Thread1", 3))
th1.daemon = True
th1.start()
# Keep the main thread alive to wait for KeyboardInterrupt
while True:
time.sleep(.1)
except KeyboardInterrupt:
print("Ended by keyboard stroke")
keepRunning = False
for th in [th0, th1]:
th.join()
Example Output:
(Thread0:110) (Thread1:330)

Can I somehow avoid using time.sleep() in this script?

I have the following python script:
#! /usr/bin/python
import os
from gps import *
from time import *
import time
import threading
import sys
gpsd = None #seting the global variable
class GpsPoller(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
global gpsd #bring it in scope
gpsd = gps(mode=WATCH_ENABLE) #starting the stream of info
self.current_value = None
self.running = True #setting the thread running to true
def run(self):
global gpsd
while gpsp.running:
gpsd.next() #this will continue to loop and grab EACH set of gpsd info to clear the buffer
if __name__ == '__main__':
gpsp = GpsPoller() # create the thread
try:
gpsp.start() # start it up
while True:
print gpsd.fix.speed
time.sleep(1) ## <<<< THIS LINE HERE
except (KeyboardInterrupt, SystemExit): #when you press ctrl+c
print "\nKilling Thread..."
gpsp.running = False
gpsp.join() # wait for the thread to finish what it's doing
print "Done.\nExiting."
I'm not very good with python, unfortunately. The script should be multi-threaded somehow (but that probably doesn't matter in the scope of this question).
What baffles me is the gpsd.next() line. If I get it right, it was supposed to tell the script that new gps data have been acquired and are ready to be read.
However, I read the data using the infinite while True loop with a 1 second pause with time.sleep(1).
What this does, however, is that it sometimes echoes the same data twice (the sensor hasn't updated the data in the last second). I figure it also skips some sensor data somehow too.
Can I somehow change the script to print the current speed not every second, but every time the sensor reports new data? According to the data sheet it should be every second (a 1 Hz sensor), but obviously it isn't exactly 1 second, but varies by milliseconds.
As a generic design rule, you should have one thread for each input channel or more generic, for each "loop over a blocking call". Blocking means that the execution stops at that call until data arrives. E.g. gpsd.next() is such a call.
To synchronize multiple input channels, use a Queue and one extra thread. Each input thread should put its "events" on the (same) queue. The extra thread loops over queue.get() and reacts appropriately.
From this point of view, your script need not be multithreaded, since there is only one input channel, namely the gpsd.next() loop.
Example code:
from gps import *
class GpsPoller(object):
def __init__(self, action):
self.gpsd = gps(mode=WATCH_ENABLE) #starting the stream of info
self.action=action
def run(self):
while True:
self.gpsd.next()
self.action(self.gpsd)
def myaction(gpsd):
print gpsd.fix.speed
if __name__ == '__main__':
gpsp = GpsPoller(myaction)
gpsp.run() # runs until killed by Ctrl-C
Note how the use of the action callback separates the plumbing from the data evaluation.
To embed the poller into a script doing other stuff (i.e. handling other threads as well), use the queue approach. Example code, building on the GpsPoller class:
from threading import Thread
from Queue import Queue
class GpsThread(object):
def __init__(self, valuefunc, queue):
self.valuefunc = valuefunc
self.queue = queue
self.poller = GpsPoller(self.on_value)
def start(self):
self.t = Thread(target=self.poller.run)
self.t.daemon = True # kill thread when main thread exits
self.t.start()
def on_value(self, gpsd):
# note that we extract the value right here.
# Otherwise it could change while the event is in the queue.
self.queue.put(('gps', self.valuefunc(gpsd)))
def main():
q = Queue()
gt = GpsThread(
valuefunc=lambda gpsd: gpsd.fix.speed,
queue = q
)
print 'press Ctrl-C to stop.'
gt.start()
while True:
# blocks while q is empty.
source, data = q.get()
if source == 'gps':
print data
The "action" we give to the GpsPoller says "calculate a value by valuefunc and put it in the queue". The mainloop sits there until a value pops out, then prints it and continues.
It is also straightforward to put other Thread's events on the queue and add the appropriate handling code.
I see two options here:
GpsPoller will check if data changed and raise a flag
GpsPoller will check id data changed and put new data in the queue.
Option #1:
global is_speed_changed = False
def run(self):
global gpsd, is_speed_changed
while gpsp.running:
prev_speed = gpsd.fix.speed
gpsd.next()
if prev_speed != gpsd.fix.speed
is_speed_changed = True # raising flag
while True:
if is_speed_changed:
print gpsd.fix.speed
is_speed_changed = False
Option #2 ( I prefer this one since it protects us from raise conditions):
gpsd_queue = Queue.Queue()
def run(self):
global gpsd
while gpsp.running:
prev_speed = gpsd.fix.speed
gpsd.next()
curr_speed = gpsd.fix.speed
if prev_speed != curr_speed:
gpsd_queue.put(curr_speed) # putting new speed to queue
while True:
# get will block if queue is empty
print gpsd_queue.get()

ideal thread structure question (involves multiple thread communication)

I'm writing an application that listens for sound events (using messages passed in with Open Sound Control), and then based on those events pauses or resumes program execution. My structure works most of the time but always bombs out in the main loop, so I'm guessing it's a thread issue. Here's a generic, simplified version of what I'm talking about:
import time, threading
class Loop():
aborted = False
def __init__(self):
message = threading.Thread(target=self.message, args=((0),))
message.start()
loop = threading.Thread(target=self.loop)
loop.start()
def message(self,val):
if val > 1:
if not self.aborted:
self.aborted = True
# do some socket communication
else:
self.aborted = False
# do some socket communication
def loop(self):
cnt = 0
while True:
print cnt
if self.aborted:
while self.aborted:
print "waiting"
time.sleep(.1);
cnt += 1
class FakeListener():
def __init__(self,loop):
self.loop = loop
listener = threading.Thread(target=self.listener)
listener.start()
def listener(self):
while True:
loop.message(2)
time.sleep(1)
if __name__ == '__main__':
loop = Loop()
#fake listener standing in for the real OSC event listener
listener = FakeListener(loop)
Of course, this simple code seems to work great, so it's clearly not fully illustrating my real code, but you get the idea. What isn't included here is also the fact that on each loop pause and resume (by setting aborted=True/False) results in some socket communication which also involves threads.
What always happens in my code is that the main loop doesn't always pickup where it left off after a sound event. It will work for a number of events but then eventually it just doesn't answer.
Any suggestions for how to structure this kind of communication amongst threads?
UPDATE:
ok, i think i've got it. here's a modification that seems to work. there's a listener thread that periodically puts a value into a Queue object. there's a checker thread that keeps checking the queue looking for the value, and once it sees it sets a boolean to its opposite state. that boolean value controls whether the loop thread continues or waits.
i'm not entirely sure what the q.task_done() function is doing here, though.
import time, threading
import Queue
q = Queue.Queue(maxsize = 0)
class Loop():
aborted = False
def __init__(self):
checker = threading.Thread(target=self.checker)
checker.setDaemon(True)
checker.start()
loop = threading.Thread(target=self.loop)
loop.start()
def checker(self):
while True:
if q.get() == 2:
q.task_done()
if not self.aborted:
self.aborted = True
else:
self.aborted = False
def loop(self):
cnt = 0
while cnt < 40:
if self.aborted:
while self.aborted:
print "waiting"
time.sleep(.1)
print cnt
cnt += 1
time.sleep(.1)
class fakeListener():
def __init__(self):
listener = threading.Thread(target=self.listener)
listener.setDaemon(True)
listener.start()
def listener(self):
while True:
q.put(2)
time.sleep(1)
if __name__ == '__main__':
#fake listener standing in for the real OSC event listener
listener = fakeListener()
loop = Loop()
Umm.. I don't completely understand your question but i'll do my best to explain what I think you need to fix your problems.
1) The thread of your Loop.loop function should be set as a daemon thread so that it exits with your main thread (so you don't have to kill the python process every time you want to shut down your program). To do this just put loop.setDaemon(True) before you call the thread's "start" function.
2)The most simple and fail-proof way to communicate between threads is with a Queue. On thread will put an item in that Queue and another thread will take an item out, do something with the item and then terminate (or get another job)
In python a Queue can be anything from a global list to python's built-in Queue object. I recommend the python Queue because it is thread safe and easy to use.

Categories