I'm using RabbitMQ as my message broker and my workers are Celery tasks. I'm trying to diagnose an issue where I'm enqueue tasks to RabbitMQ but Celery doesn't pick then up.
Is there a way I can check what tasks are enqueued in RabbitMQ? I'd like to see the date and time when they are enqueued, any ETA is specified, the arguments and the task name.
I haven't been able to find this information in the docs — maybe I've overlooked it — and was hoping that some of you might know an easy way to inspect the task queue. Thanks.
You can use Flower to monitor tasks in real time.
https://github.com/mher/flower
Check out also rabbitmqclt command which inspects RabbitMQ server status:
http://www.rabbitmq.com/man/rabbitmqctl.1.man.html
rabbitmqctl list_queues
Also some celery tasks to monitor the queue:
http://docs.celeryproject.org/en/latest/userguide/monitoring.html
Check out these commands:
#shows status of all worker nodes
celery status
#List active tasks
celery inspect active
#Show worker statistics (call counts etc.)
celery inspect stats
I believe the command you are looking for is:
celery inspect reserved
The documentation[1] has the following description:
Reserved tasks are tasks that have been received, but are still waiting to be executed.
[1] http://docs.celeryproject.org/en/latest/userguide/workers.html?highlight=inspect%20reserved
As long as the management plugin is enabled, an arbitrary number of messages can be consumed from the queue and optionally requeued:
rabbitmqadmin get queue=queue_name requeue=true count=100
Related
I am using Celery with a RabbitMQ server. I have a publisher, which could potentially be terminated by a SIGKILL and since this signal cannot be watched, I cannot revoke the tasks. What would be a common approach to revoke the tasks where the publisher is not alive anymore?
I experimented with an interval on the worker side, but the publisher is obviously not registered as a worker, so I don't know how I can detect a timeout
There's nothing built-in to celery to monitor the producer / publisher status -- only the worker / consumer status. There are other alternatives that you can consider, for example by using a redis expiring key that has to be updated periodically by the publisher that can serve as a proxy for whether a publisher is alive. And then in the task checking to see if the flag for a publisher still exists within redis, and if it doesn't the task returns doing nothing.
I am pretty sure what you want is not possible with Celery, so I suggest you to shift your logic around and redesign everything to be part of a Celery workflow (or several Celery canvases depends on the actual use-case). My experience with Celery is that you can build literally any workflow you can imagine with those Celery primitives and/or custom Celery signatures.
Another solution, which works in my case, is to add the next task only if the current processed ones are finished. In this case the queue doesn't fill up.
Celery seems to be a great tool, but I have hard time understanding how the various Celery components work together:
The workers
The apps
The tasks
The message Broker (like RabbitMQ)
From what I understand, the command line:
celery -A not-clear-what-this-option-is worker
should run some sort of celery "worker server" which would itself need to connect to a broker server (I'm not so sure why so many servers are needed).
Then in any python code, some task may be sent to the worker by instantiating an app:
app = Celery('my_module', broker='pyamqp://guest#localhost//')
and then by decorating functions with this app in the following way:
#app.tasks
def my_func():
...
so that "my_func()" can now be called as "my_func.delay()" to be ran in an asynchronuous way.
Here are my questions:
What happens when my_func.delay() is called ? which server talks to which first ? and sending what where ?
What is the option to put behind the "-A" of the celery command? is this really needed ?
Suppose I have a process X which instantiates a Celery app to launch the task A, and suppose I have another process Y who wants to know the status of task A launched by X. I assume there is a way for Y to do so, but I don't know how. I suppose that Y should create its own instance of a Celery app. But then:
What function to call in the celery app of Y to get this information (and what is the "identifier" of task A inside the process Y) ?
How does this work in terms of communication, that is, when does the request goes through the Broker, and when does it go to the worker(s) ?
If anyone has some information about these questions, I would be grateful. I intend to use Celery in a Django project, where some requests to the server can trigger various time consuming tasks, and/or inquire about the status of previously launched tasks (pending, finished, error, etc...).
About the broker:
The main role of the broker is to mediate communication between the client and the worker
basically a lot of information is being generated and processed while your worker is running
taking care of this information is the broker's role
e.g. you can configure redis so that no information is lost if the server is shut down while running a process
The worker:
you can think of the worker as an instance independent of your application, which will only execute those tasks that you delegate to it
About the state of a task:
there are ways to consult celery to find out the status of a task, but I would not recommend building your application logic depending on this
if you want to get the output of a process and turn it in the input of another one, using tasks, I would recommend you to use a queue
run task A, and before finish insert your result objects in the queue
task B will listen to the queue and processes whatever comes up
The command:
on the terminal you can see in more detail what each argument means by running celery -h or celery --help
but the argument basically specifies which instance of celery you intend to run. So normally this argument will indicate where the instance you have configured and intend to execute can be found
usage: celery [-h] [-A APP] [-b BROKER] [--result-backend RESULT_BACKEND]
[--loader LOADER] [--config CONFIG] [--workdir WORKDIR]
[--no-color] [--quiet]
I hope this can provide an initial overview for those who get here
Celery is used to make functions to run in the background. Imagine you have a web API that does a job, and returns a response. You know, that job would seriously affect the response time for the API. So you'll transfer that particular job to Celery, and your API will respond instantly. Examples for some job that affect performance of an API are,
Routing to email servers
Routing to SMS Gateways
Database backup
Chained database operations
File conversion
Now, let's cover each components of celery.
The workers
Celery workers execute the job(function). They are asynchronous. So you'll have double the number of your processor cores as celery workers. You can assign a name and task to a celery worker#.
The apps
The app is the name of project you're working on. You'll have to specify that name in the celery instance.
The tasks
The functions you need to be executed in the background. Every task Celery execute will have a task id, state(and more). You can get that by inspecting a particular task.
The message Broker
Those tasks which will be executed in the background has to be moved from your python project to to Celery workers. Message brokers act as a medium here. So functions with its arguments will be transferred to brokers and from brokers Celery will fetch them to execute.
Some codes
celery -A project_name worker_name
celery -A project_name worker_name inspect
More in documentation
docs.celeryproject.org
Cheers,
I have a celery setup running in a production environment (on Linux) where I need to consume two different task types from two dedicated queues (one for each). The problem that arises is, that all workers are always bound to both queues, even when I specify them to only consume from one of them.
TL;DR
Celery running with 2 queues
Messages are published in correct queue as designed
Workers keep consuming both queues
Leads to deadlock
General Information
Think of my two different task types as a hierarchical setup:
A task is a regular celery task that may take quite some time, because it dynamically dispatches other celery tasks and may be required to chain through their respective results
A node is a dynamically dispatched sub-task, which also is a regular celery task but itself can be considered an atomic unit.
My task thus can be a more complex setup of nodes where the results of one or more nodes serves as input for one or more subsequent nodes, and so on. Since my tasks can take longer and will only finish when all their nodes have been deployed, it is essential that they are handled by dedicated workers to keep a sufficient number of workers free to consume the nodes. Otherwise, this could lead to the system being stuck, when a lot of tasks are dispatched, each consumed by another worker, and their respective nodes are only queued but will never be consumed, because all workers are blocked.
If this is a bad design in general, please make any propositions on how I can improve it. I did not yet manage to build one of these processes using celery's built-in canvas primitives. Help me, if you can?!
Configuration/Setup
I run celery with amqp and have set up the following queues and routes in the celery configuration:
CELERY_QUERUES = (
Queue('prod_nodes', Exchange('prod'), routing_key='prod.node'),
Queue('prod_tasks', Exchange('prod'), routing_key='prod.task')
)
CELERY_ROUTES = (
'deploy_node': {'queue': 'prod_nodes', 'routing_key': 'prod.node'},
'deploy_task': {'queue': 'prod_tasks', 'routing_key': 'prod.task'}
)
When I launch my workers, I issue a call similar to the following:
celery multi start w_task_01 w_node_01 w_node_02 -A my.deployment.system \
-E -l INFO -P gevent -Q:1 prod_tasks -Q:2-3 prod_nodes -c 4 --autoreload \
--logfile=/my/path/to/log/%N.log --pidfile=/my/path/to/pid/%N.pid
The Problem
My queue and routing setup seems to work properly, as I can see messages being correctly queued in the RabbitMQ Management web UI.
However, all workers always consume celery tasks from both queues. I can see this when I start and open up the flower web UI and inspect one of the deployed tasks, where e.g. w_node_01 starts consuming messages from the prod_tasks queue, even though it shouldn't.
The RabbitMQ Management web UI furthermore tells me, that all started workers are set up as consumers for both queues.
Thus, I ask you...
... what did I do wrong?
Where is the issue with my setup or worker start call; How can I circumvent the problem of workers always consuming from both queues; Do I really have to make additional settings during runtime (what I certainly do not want)?
Thanks for your time and answers!
You can create 2 separate workers for each queue and each one's define what queue it should get tasks from using the -Q command line argument.
If you want to keep the number processes the same, by default a process is opened for each core for each worker you can use the --concurrency flag (See Celery docs for more info)
Celery allows configuring a worker with a specific queue.
1) Specify the name of the queue with 'queue' attribute for different types of jobs
celery.send_task('job_type1', args=[], kwargs={}, queue='queue_name_1')
celery.send_task('job_type2', args=[], kwargs={}, queue='queue_name_2')
2) Add the following entry in configuration file
CELERY_CREATE_MISSING_QUEUES = True
3) On starting the worker, pass -Q 'queue_name' as argument, for consuming from that desired queue.
celery -A proj worker -l info -Q queue_name_1 -n worker1
celery -A proj worker -l info -Q queue_name_2 -n worker2
I'm using Celery + RabbitMQ.
When a Celery worker isn't available all the tasks are waiting in RabbitMQ.
Just as it becomes online all this bunch of tasks is executed immediately.
Can I somehow prevent it happening?
For example there are 100 tasks (the same) waiting for a Celery worker, can I execute only 1 of them when a Celery worker comes online?
Since all the tasks are the same in your queue, A better way to do this is to send the task only once, to do this you need to be able to track that the task was published, for example:
Using a lock, example: Ensuring a task is only executed one at a time
Using a custom task ID and a custom state after the task is published, for example:
To add a custom state when the task is published:
from celery import current_app
from celery.signals import after_task_publish
#after_task_publish.connect
def add_sent_state(sender=None, body=None, **kwargs):
"""Track Published Tasks."""
# get the task instance from its name
task = current_app.tasks.get(sender)
# if there is no task.backend fallback to app.backend
backend = task.backend if task else current_app.backend
# store the task state
backend.store_result(body['id'], None, 'SENT')
When you want to send the task you can check if the task has already been published, and since we're using a custom state the task's state won't be PENDING when it's published (which could be unkown) so we can check using:
from celery import states
# the task has a custom ID
task = task_func.AsyncResult('CUSTOM_ID')
if task.state != states.PENDING:
# the task already exists
else:
# send the task
task_func.apply_async(args, kwargs, task_id='CUSTOM_ID')
I'm using this approach in my app and it's working great, my tasks could be sent multiple times and they are identified by their IDs so this way each task is sent once.
If you're still want to cancel all the tasks in the queue you can use:
# import your Celery instance
from project.celery import app
app.control.purge()
Check the Celery FAQ How do I purge all waiting tasks ?
There are two ways to do this.
First, Run only one worker with a concurrency of one.
celery worker -A your_app -l info -c 1
This command starts a worker with a concurrency of one. So only one task will be executed at a time. This is the preferred way to do it.
Second method is bit complicated. You need to acquire lock and release the lock to make sure only one task is executed at a time.
Alternatively, if you want, you can remove all the tasks from queue using purge command.
celery -A your_app purge
I'm just starting out with celery in a Django project, and am kinda stuck at this particular problem: Basically, I need to distribute a long-running task to different workers. The task is actually broken into several steps, each of which takes considerable time to complete. Therefore, if some step fails, I'd like celery to retry this task using the same worker to reuse the results from the completed steps. I understand that celery uses routing to distribute tasks to certain server, but I can't find anything about this particular problem. I use RabbitMQ as my broker.
You could have every celeryd instance consume from a queue named after the hostname of the worker:
celeryd -l info -n worker1.example.com -Q celery,worker1.example.com
sets the hostname to worker1.example.com and will consume from a queue named the same, as well as the default queue (named celery).
Then to direct a task to a specific worker you can use:
task.apply_async(args, kwargs, queue="worker1.example.com")
similary to direct a retry:
task.retry(queue="worker1.example.com")
or to direct the retry to the same worker:
task.retry(queue=task.request.hostname)