I want to segment images (from magazines) in text and image parts. I have several histograms for several ROIs in my picture. I use opencv with python (cv2).
I want to recognize histograms that look like this
http://matplotlib.sourceforge.net/users/image_tutorial-6.png
as it is a typical shape for a text region. How can I do that?
Edit: Thank you for your help so far.
I compared the histograms I got from my ROIs to a sample histogram I provided:
hist = cv2.calcHist(roi,[0,1], None, [180,256],ranges)
compareValue = cv2.compareHist(hist, samplehist, cv.CV_COMP_CORREL)
print "ROI: {0}, compareValue: {1}".format(i,compareValue)
Assuming ROI 0, 1, 4 and 5 are text regions and ROI is an image region, I get output like this:
ROI: 0, compareValue: 1.0
ROI: 1, compareValue: -0.000195522081574 <--- wrong classified
ROI: 2, compareValue: 0.0612670248952
ROI: 3, compareValue: -0.000517370176887
ROI: 4, compareValue: 1.0
ROI: 5, compareValue: 1.0
What can I do to avoid wrong classification? For some images, the misclassification rate is about 30%, which is way too high.
(I tried also with CV_COMP_CHISQR, CV_COMP_INTERSECT, CV_COMP_BHATTACHARYY and (hist*samplehist).sum() but they also provide wrong compareValues)
(See the EDIT at the end in case i misunderstood the question) :
If you are looking to draw the histograms, I had submitted one python sample to OpenCV, and you can get it from here :
http://code.opencv.org/projects/opencv/repository/entry/trunk/opencv/samples/python2/hist.py
It is used to draw two kinds of histograms. First one applicable to both color and grayscale images as shown here : http://opencvpython.blogspot.in/2012/04/drawing-histogram-in-opencv-python.html
Second one is exclusive for grayscale image which is same as your image in the question.
I will show the second and its modification.
Consider a full image as below :
We need to draw a histogram as you have shown. Check the below code:
import cv2
import numpy as np
img = cv2.imread('messi5.jpg')
mask = cv2.imread('mask.png',0)
ret,mask = cv2.threshold(mask,127,255,0)
def hist_lines(im,mask):
h = np.zeros((300,256,3))
if len(im.shape)!=2:
print "hist_lines applicable only for grayscale images"
#print "so converting image to grayscale for representation"
im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
hist_item = cv2.calcHist([im],[0],mask,[256],[0,255])
cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX)
hist=np.int32(np.around(hist_item))
for x,y in enumerate(hist):
cv2.line(h,(x,0),(x,y),(255,255,255))
y = np.flipud(h)
return y
histogram = hist_lines(img,None)
And below is the histogram we got. Remember it is histogram of full image. For that,we have given None for mask.
Now I want to find the histogram of some part of the image. OpenCV histogram function has got a mask facility for that. For normal histogram, you should set it None. Otherwise you have to specify the mask.
Mask is a 8-bit image, where white denotes that region should be used for histogram calculations, and black means it should not.
So I used a mask like below ( created using paint, you have to create your own mask for your purposes).
I changed the last line of code as below :
histogram = hist_lines(img,mask)
Now see the difference below :
(Remember, values are normalized, so values shown are not actual pixel count, normalized to 255. Change it as you like.)
EDIT :
I think i misunderstood your question. You need to compare histograms, right ?
If that is what you wanted, you can use cv2.compareHist function.
There is an official tutorial about this in C++. You can find its corresponding Python code here.
You can use a simple correlation metric.
make sure that the histogram you compute and your reference are normalized (ie represent probapilities)
for each histogram compute (given that myRef and myHist are numpy arrays):
metric = (myRef * myHist).sum()
this metric is a measure of how much the histogram looks like your reference.
Related
I have 10 greyscale brain MRI scans from BrainWeb. They are stored as a 4d numpy array, brains, with shape (10, 181, 217, 181). Each of the 10 brains is made up of 181 slices along the z-plane (going through the top of the head to the neck) where each slice is 181 pixels by 217 pixels in the x (ear to ear) and y (eyes to back of head) planes respectively.
All of the brains are type dtype('float64'). The maximum pixel intensity across all brains is ~1328 and the minimum is ~0. For example, for the first brain, I calculate this by brains[0].max() giving 1328.338086605072 and brains[0].min() giving 0.0003886114541273855. Below is a plot of a slice of a brain[0]:
I want to binarize all these brain images by rescaling the pixel intensities from [0, 1328] to {0, 1}. Is my method correct?
I do this by first normalising the pixel intensities to [0, 1]:
normalized_brains = brains/1328
And then by using the binomial distribution to binarize each pixel:
binarized_brains = np.random.binomial(1, (normalized_brains))
The plotted result looks correct:
A 0 pixel intensity represents black (background) and 1 pixel intensity represents white (brain).
I experimented by implementing another method to normalise an image from this post but it gave me just a black image. This is because np.finfo(np.float64) is 1.7976931348623157e+308, so the normalization step
normalized_brains = brains/1.7976931348623157e+308
just returned an array of zeros which in the binarizition step also led to an array of zeros.
Am I binarising my images using a correct method?
Your method of converting the image to a binary image basically amounts to random dithering, which is a poor method of creating the illusion of grey values on a binary medium. Old-fashioned print is a binary medium, they have fine-tuned the methods to represent grey-value photographs in print over centuries. This process is called halftoning, and is shaped in part by properties of ink on paper, that we do not have to deal with in binary images.
So what methods have people come up with outside of print? Ordered dithering (mostly Bayer matrix), and error diffusion dithering. Read more about dithering on Wikipedia. I wrote a blog post showing how to implement all of these methods in MATLAB some years ago.
I would recommend you use error diffusion dithering for your particular application. Here is some code in MATLAB (taken from my blog post liked above) for the Floyd-Steinberg algorithm, I hope that you can translate this to Python:
img = imread('https://i.stack.imgur.com/d5E9i.png');
img = img(:,:,1);
out = double(img);
sz = size(out);
for ii=1:sz(1)
for jj=1:sz(2)
old = out(ii,jj);
%new = 255*(old >= 128); % Original Floyd-Steinberg
new = 255*(old >= 128+(rand-0.5)*100); % Simple improvement
out(ii,jj) = new;
err = new-old;
if jj<sz(2)
% right
out(ii ,jj+1) = out(ii ,jj+1)-err*(7/16);
end
if ii<sz(1)
if jj<sz(2)
% right-down
out(ii+1,jj+1) = out(ii+1,jj+1)-err*(1/16);
end
% down
out(ii+1,jj ) = out(ii+1,jj )-err*(5/16);
if jj>1
% left-down
out(ii+1,jj-1) = out(ii+1,jj-1)-err*(3/16);
end
end
end
end
imshow(out)
Resampling the image before applying the dithering greatly improves the results:
img = imresize(img,4);
% (repeat code above)
imshow(out)
NOTE that the above process expects the input to be in the range [0,255]. It is easy to adapt to a different range, say [0,1328] or [0,1], but it is also easy to scale your images to the [0,255] range.
Have you tried a threshold on the image?
This is a common way to binarize images, rather than trying to apply a random binomial distribution. You could try something like:
binarized_brains = (brains > threshold_value).astype(int)
which returns an array of 0s and 1s according to whether the image value was less than or greater than your chosen threshold value.
You will have to experiment with the threshold value to find the best one for your images, but it does not need to be normalized first.
If this doesn't work well, you can also experiment with the thresholding options available in the skimage filters package.
IT is easy in OpenCV. as mentioned a very common way is defining a threshold, But your result looks like you are allocating random values to your intensities instead of thresholding it.
import cv2
im = cv2.imread('brain.png', cv2.CV_LOAD_IMAGE_GRAYSCALE)
(th, brain_bw) = cv2.threshold(imy, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
th = (DEFINE HERE)
im_bin = cv2.threshold(im, th, 255, cv
cv2.imwrite('binBrain.png', brain_bw)
brain
binBrain
I have an image, using steganography I want to save the data in border pixels only.
In other words, I want to save data only in the least significant bits(LSB) of border pixels of an image.
Is there any way to get border pixels to store data( max 15 characters text) in the border pixels?
Plz, help me out...
OBTAINING BORDER PIXELS:
Masking operations are one of many ways to obtain the border pixels of an image. The code would be as follows:
a= cv2.imread('cal1.jpg')
bw = 20 //width of border required
mask = np.ones(a.shape[:2], dtype = "uint8")
cv2.rectangle(mask, (bw,bw),(a.shape[1]-bw,a.shape[0]-bw), 0, -1)
output = cv2.bitwise_and(a, a, mask = mask)
cv2.imshow('out', output)
cv2.waitKey(5000)
After I get an array of ones with the same dimension as the input image, I use cv2.rectangle function to draw a rectangle of zeros. The first argument is the image you want to draw on, second argument is start (x,y) point and the third argument is the end (x,y) point. Fourth argument is the color and '-1' represents the thickness of rectangle drawn (-1 fills the rectangle). You can find the documentation for the function here.
Now that we have our mask, you can use 'cv2.bitwise_and' (documentation) function to perform AND operation on the pixels. Basically what happens is, the pixels that are AND with '1' pixels in the mask, retain their pixel values. Pixels that are AND with '0' pixels in the mask are made 0. This way you will have the output as follows:
.
The input image was :
You have the border pixels now!
Using LSB planes to store your info is not a good idea. It makes sense when you think about it. A simple lossy compression would affect most of your hidden data. Saving your image as JPEG would result in loss of info or severe affected info. If you want to still try LSB, look into bit-plane slicing. Through bit-plane slicing, you basically obtain bit planes (from MSB to LSB) of the image. (image from researchgate.net)
I have done it in Matlab and not quite sure about doing it in python. In Matlab,
the function, 'bitget(image, 1)', returns the LSB of the image. I found a question on bit-plane slicing using python here. Though unanswered, you might want to look into the posted code.
To access border pixel and enter data into it.
A shape of an image is accessed by t= img.shape. It returns a tuple of the number of rows, columns, and channels.A component is RGB which 1,2,3 respectively.int(r[0]) is variable in which a value is stored.
import cv2
img = cv2.imread('xyz.png')
t = img.shape
print(t)
component = 2
img.itemset((0,0,component),int(r[0]))
img.itemset((0,t[1]-1,component),int(r[1]))
img.itemset((t[0]-1,0,component),int(r[2]))
img.itemset((t[0]-1,t[1]-1,component),int(r[3]))
print(img.item(0,0,component))
print(img.item(0,t[1]-1,component))
print(img.item(t[0]-1,0,component))
print(img.item(t[0]-1,t[1]-1,component))
cv2.imwrite('output.png',img)
I'm trying to stretch an image's histogram using a logarithmic transformation. Basically, I am applying a log operation to each pixel's intensity. When I'm trying to change image's value in each pixel, the new values are not saved but the histogram looks OK. Also, the maximum value is not correct. This is my code:
import cv2
import numpy as np
import math
from matplotlib import pyplot as plt
img = cv2.imread('messi.jpg',0)
img2 = img
for i in range(0,img2.shape[0]-1):
for j in range(0,img2.shape[1]-1):
if (math.log(1+img2[i,j],2)) < 0:
img2[i,j]=0
else:
img2[i,j] = np.int(math.log(1+img2[i,j],2))
print (np.int(math.log(1+img2[i,j],2)))
print (img2.ravel().max())
cv2.imshow('LSP',img2)
cv2.waitKey(0)
fig = plt.gcf()
fig.canvas.set_window_title('LSP histogram')
plt.hist(img2.ravel(),256,[0,256]); plt.show()
img3 = img2
B = np.int(img3.max())
A = np.int(img3.min())
print ("Maximum intensity = ", B)
print ("minimum intensity = ", A)
This is also the histogram I get:
However, the maximum intensity shows 186! This isn't applying the proper logarithmic operation at all.
Any ideas?
The code you wrote performs a logarithmic transformation applied to the image intensities. The reason why you are getting such a high spurious intensity as the maximum is because your for loops are wrong. Specifically, your range is incorrect. range is exclusive of the ending interval, which means that you must go up to img.shape[0] and img.shape[1] respectively, and not img.shape[0]-1 or img.shape[1]-1. Therefore, you are missing the last row and last column of the image, and these don't get touched by logarithmic operation. The maximum that is reported is from one of these pixels in the last row or column that you didn't touch.
Once you correct this, you don't get those bad intensities anymore:
for i in range(0,img2.shape[0]): # Change
for j in range(0,img2.shape[1]): # Change
if (math.log(1+img2[i,j],2)) < 0:
img2[i,j]=0
else:
img2[i,j] = np.int(math.log(1+img2[i,j],2))
Doing that now gives us:
('Maximum intensity = ', 7)
('minimum intensity = ', 0)
However, what you're going to get now is a very dark image. The histogram that you have shown us illustrates that all of the image pixels are in the dark range... roughly between [0-7]. Because of that, the majority of your image is going to be dark if you use uint8 as the data type for visualization. Take note that I searched for the Lionel Messi image that's part of the OpenCV tutorials, and this is the image I found:
Source: https://opencv-python-tutroals.readthedocs.org/en/latest/_images/roi.jpg
Your code is converting this to grayscale, and that's fine for the purpose of your question. Now, using the above image, if you actually show what the histogram count looks like as well as what the intensities are per bin in the histogram, this is what we get for img2:
In [41]: np.unique(img2)
Out[41]: array([0, 1, 2, 3, 4, 5, 6, 7], dtype=uint8)
In [42]: np.bincount(img2.ravel())
Out[42]: array([ 86, 88, 394, 3159, 14841, 29765, 58012, 19655])
As you can see, the bulk of the image pixels are hovering between the [0-7] range, which is why everything looks black. If you want to see this better, perhaps scale the image by roughly 255 / 7 = 36 or so we can see the image better:
img2 = 36*img2
cv2.imshow('LSP',img2)
cv2.waitKey(0)
We get this image:
I also get this histogram:
That personally looks very ugly... at least to me. As such, I would recommend that you choose a more meaningful image transformation if you want to stretch the histogram. In fact, the log operation compresses the dynamic range of the histogram. If you want to stretch the histogram, go the opposite way and try a power-law operation. Specifically, given an input intensity and the output is defined as:
out = c*in^(p)
in is the input intensity, p is a power and c is a constant to ensure that you scale the image so that the maximum intensity gets mapped to the same maximum intensity of the input when you're finished and not anything larger. That can be done by calculating c so that:
c = (img2.max()) / (img2.max()**p)
... where p is the power you want. In addition, the transformation via power-law can be explained with this nice diagram:
Source: http://www.nptel.ac.in/courses/117104069/chapter_8/8_14.html
Basically, powers that are less than 1 perform an intensity expansion where darker intensities get pushed towards the lighter side. Similarly, powers that are greater than 1 perform an intensity compression where lighter intensities get pushed to the darker side. In your case, you want to expand the histogram, and so you want the first option. Specifically, try making the intensities that are smaller go towards the larger range. This can be done by choosing a power that's smaller than 1... try 0.5 for example.
You'd modify your code so that it is like this:
img2 = img2.astype(np.float) # Cast to float
c = (img2.max()) / (img2.max()**(0.5))
for i in range(0,img2.shape[0]-1):
for j in range(0,img2.shape[1]-1):
img2[i,j] = np.int(c*img2[i,j]**(0.5))
# Cast back to uint8 for display
img2 = img2.astype(np.uint8)
Doing that, I get this image:
I also get this histogram:
Minor Note
If I can suggest something in terms of efficiency, I wouldn't recommend that you loop through the entire image and set each pixel individually... that's how numpy arrays were not supposed to be used. You can achieve what you want vectorized in a single line of code.
With your old code, use np.log2, not math.log with the base 2 with numpy arrays:
import cv2
import numpy as np
from matplotlib import pyplot as plt
# Your code
img = cv2.imread('messi.jpg',0)
# New code
img2 = np.log2(1 + img.astype(np.float)).astype(np.uint8)
# Back to your code
img2 = 36*img2 # Edit from before
cv2.imshow('LSP',img2)
cv2.waitKey(0)
fig = plt.gcf()
fig.canvas.set_window_title('LSP histogram')
plt.hist(img2.ravel(),256,[0,256]); plt.show()
img3 = img2
B = np.int(img3.max())
A = np.int(img3.min())
print ("Maximum intensity = ", B)
print ("minimum intensity = ", A)
cv2.destroyAllWindows() # Don't forget this
Similarly, if you want to apply a power-law transformation, it's very simply:
import cv2
import numpy as np
from matplotlib import pyplot as plt
# Your code
img = cv2.imread('messi.jpg',0)
# New code
c = (img2.max()) / (img2.max()**(0.5))
img2 = (c*img.astype(np.float)**(0.5)).astype(np.uint8)
#... rest of code as before
I can only ever find examples in C/C++ and they never seem to map well to the OpenCV API. I'm loading video frames (both from files and from a webcam) and want to reduce them to 16 color, but mapped to a 24-bit RGB color-space (this is what my output requires - a giant LED display).
I read the data like this:
ret, frame = self._vid.read()
image = cv2.cvtColor(frame, cv2.COLOR_RGB2BGRA)
I did find the below python example, but cannot figure out how to map that to the type of output data I need:
import numpy as np
import cv2
img = cv2.imread('home.jpg')
Z = img.reshape((-1,3))
# convert to np.float32
Z = np.float32(Z)
# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 8
ret,label,center=cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
# Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img.shape))
cv2.imshow('res2',res2)
cv2.waitKey(0)
cv2.destroyAllWindows()
That obviously works for the OpenCV image viewer but trying to do the same errors on my output code since I need an RGB or RGBA format. My output works like this:
for y in range(self.height):
for x in range(self.width):
self._led.set(x,y,tuple(image[y,x][0:3]))
Each color is represented as an (r,g,b) tuple.
Any thoughts on how to make this work?
I think the following could be faster than kmeans, specially with a k = 16.
Convert the color image to gray
Contrast stretch this gray image to so that resulting image gray levels are between 0 and 255 (use normalize with NORM_MINMAX)
Calculate the histogram of this stretched gray image using 16 as the number of bins (calcHist)
Now you can modify these 16 values of the histogram. For example you can sort and assign ranks (say 0 to 15), or assign 16 uniformly distributed values between 0 and 255 (I think these could give you a consistent output for a video)
Backproject this histogram onto the stretched gray image (calcBackProject)
Apply a color-map to this backprojected image (you might want to scale the backprojected image befor applying a colormap using applyColorMap)
Tip for kmeans:
If you are using kmeans for video, you can use the cluster centers from the previous frame as the initial positions in kmeans for the current frame. That way, it'll take less time to converge, so kmeans in the subsequent frames will most probably run faster.
You can speed up your processing by applying the k-means on a downscaled version of your image. This will give you the cluster centroids. You can then quantify each pixel of the original image by picking the closest centroid.
I've decided to use guiqwt as my main plot library in Python and it works quite well. However, I'm missing a contour plot feature, so I had to work out my own contours in my image plots. That was quite easy by using scikit. Now I have my plot showing the image and the contours on top. Scale unit in x and y-direction is pixel as the image raw data is given per pixel and the calculated contours as well.
My problem is to convert the pixel-scale into e. g. mm-scale without scaling the image. I want to replace the original scale with a scale that represents the measured distances. The distances are available in an array.
In my first attempt I tried to change the AxisScaleDivision by creating a new one and using QwtPlot::setAxisScaleDiv. But that seems to work like a zoom-function as the image is reduced to the new interval.
Here is my code for a small example:
from guiqwt.plot import ImageDialog
from guiqwt.builder import make
from skimage import measure
import numpy as np
data = np.random.rand(80,30)
contours = measure.find_contours(data, 0.1)
win = ImageDialog(edit=False, toolbar=True, wintitle="Contrast test",
options=dict(show_contrast=True))
img = make.image(data)
plot = win.get_plot()
plot.add_item(img)
for n, contour in enumerate(contours):
curve = make.curve(contour[:, 1], contour[:, 0], 'k-')
plot.add_item(curve)
win.show()
scaleEng = plot.axisScaleEngine(2)
scaleDiv = scaleEng.divideScale(20, 30, 5, 5, 0)
plot.setAxisScaleDiv(2, scaleDiv)
plot.replot()
The syntax is very close to qwt, so I think anybody who is familiar with qwt might be able to help me :)
The image zoom should stay unaltered. Only the axis should be recalculated to a mm-scale and afterwards, of course, adapted when the zoom function is used.
I solved the problem by using a completely different approach. I used the xyimage-function of guiqwt. However, I had to scale my contours too. I missed that the last time, that's why I posted the question.