I want to create a function which plot on screen a set of figures in a single window. By now I write this code:
import pylab as pl
def plot_figures(figures):
"""Plot a dictionary of figures.
Parameters
----------
figures : <title, figure> dictionary
"""
for title in figures:
pl.figure()
pl.imshow(figures[title])
pl.gray()
pl.title(title)
pl.axis('off')
It works perfectly but I would like to have the option for plotting all the figures in single window. And this code doesn't. I read something about subplot but it looks quite tricky.
You can define a function based on the subplots command (note the s at the end, different from the subplot command pointed by urinieto) of matplotlib.pyplot.
Below is an example of such a function, based on yours, allowing to plot multiples axes in a figure. You can define the number of rows and columns you want in the figure layout.
def plot_figures(figures, nrows = 1, ncols=1):
"""Plot a dictionary of figures.
Parameters
----------
figures : <title, figure> dictionary
ncols : number of columns of subplots wanted in the display
nrows : number of rows of subplots wanted in the figure
"""
fig, axeslist = plt.subplots(ncols=ncols, nrows=nrows)
for ind,title in enumerate(figures):
axeslist.ravel()[ind].imshow(figures[title], cmap=plt.gray())
axeslist.ravel()[ind].set_title(title)
axeslist.ravel()[ind].set_axis_off()
plt.tight_layout() # optional
Basically, the function creates a number of axes in the figures, according to the number of rows (nrows) and columns (ncols) you want, and then iterates over the list of axis to plot your images and adds the title for each of them.
Note that if you only have one image in your dictionary, your previous syntax plot_figures(figures) will work since nrows and ncols are set to 1 by default.
An example of what you can obtain:
import matplotlib.pyplot as plt
import numpy as np
# generation of a dictionary of (title, images)
number_of_im = 6
figures = {'im'+str(i): np.random.randn(100, 100) for i in range(number_of_im)}
# plot of the images in a figure, with 2 rows and 3 columns
plot_figures(figures, 2, 3)
You should use subplot.
In your case, it would be something like this (if you want them one on top of the other):
fig = pl.figure(1)
k = 1
for title in figures:
ax = fig.add_subplot(len(figures),1,k)
ax.imshow(figures[title])
ax.gray()
ax.title(title)
ax.axis('off')
k += 1
Check out the documentation for other options.
If you want to group multiple figures in one window you can do smth. like this:
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('C:/.../Download.jpg') # Path to image
img = img[0:150,50:200,0] # Define image size to be square --> Or what ever shape you want
fig = plt.figure()
nrows = 10 # Define number of columns
ncols = 10 # Define number of rows
image_heigt = 150 # Height of the image
image_width = 150 # Width of the image
pixels = np.zeros((nrows*image_heigt,ncols*image_width)) # Create
for a in range(nrows):
for b in range(ncols):
pixels[a*image_heigt:a*image_heigt+image_heigt,b*image_heigt:b*image_heigt+image_heigt] = img
plt.imshow(pixels,cmap='jet')
plt.axis('off')
plt.show()
As result you receive:
Building on the answer from: How to display multiple images in one figure correctly?, here is another method:
import math
import numpy as np
import matplotlib.pyplot as plt
def plot_images(np_images, titles = [], columns = 5, figure_size = (24, 18)):
count = np_images.shape[0]
rows = math.ceil(count / columns)
fig = plt.figure(figsize=figure_size)
subplots = []
for index in range(count):
subplots.append(fig.add_subplot(rows, columns, index + 1))
if len(titles):
subplots[-1].set_title(str(titles[index]))
plt.imshow(np_images[index])
plt.show()
You can also do this:
import matplotlib.pyplot as plt
f, axarr = plt.subplots(1, len(imgs))
for i, img in enumerate(imgs):
axarr[i].imshow(img)
plt.suptitle("Your title!")
plt.show()
def plot_figures(figures, nrows=None, ncols=None):
if not nrows or not ncols:
# Plot figures in a single row if grid not specified
nrows = 1
ncols = len(figures)
else:
# check minimum grid configured
if len(figures) > nrows * ncols:
raise ValueError(f"Too few subplots ({nrows*ncols}) specified for ({len(figures)}) figures.")
fig = plt.figure()
# optional spacing between figures
fig.subplots_adjust(hspace=0.4, wspace=0.4)
for index, title in enumerate(figures):
plt.subplot(nrows, ncols, index + 1)
plt.title(title)
plt.imshow(figures[title])
plt.show()
Any grid configuration (or none) can be specified as long as the product of the number of rows and the number of columns is equal to or greater than the number of figures.
For example, for len(figures) == 10, these are acceptable
plot_figures(figures)
plot_figures(figures, 2, 5)
plot_figures(figures, 3, 4)
plot_figures(figures, 4, 3)
plot_figures(figures, 5, 2)
import numpy as np
def save_image(data, ws=0.1, hs=0.1, sn='save_name'):
import matplotlib.pyplot as plt
m = n = int(np.sqrt(data.shape[0])) # (36, 1, 32, 32)
fig, ax = plt.subplots(m,n, figsize=(m*6,n*6))
ax = ax.ravel()
for i in range(data.shape[0]):
ax[i].matshow(data[i,0,:,:])
ax[i].set_xticks([])
ax[i].set_yticks([])
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9,
top=0.9, wspace=ws, hspace=hs)
plt.tight_layout()
plt.savefig('{}.png'.format(sn))
data = np.load('img_test.npy')
save_image(data, ws=0.1, hs=0.1, sn='multiple_plot')
Related
My dataset is in the form of :
Data[0] = [headValue,x0,x1,..xN]
Data[1] = [headValue_ya,ya0,ya1,..yaN]
Data[2] = [headValue_yb,yb0,yb1,..ybN]
...
Data[n] = [headvalue_yz,yz0,yz1,..yzN]
I want to plot f(y*) = x, so I can visualize all Lineplots in the same figure with different colors, each color determined by the headervalue_y*.
I also want to add a colorbar whose color matching the lines and therefore the header values, so we can link visually which header value leads to which behaviour.
Here is what I am aiming for :(Plot from Lacroix B, Letort G, Pitayu L, et al. Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Dev Cell. 2018;45(4):496–511.e6. doi:10.1016/j.devcel.2018.04.022)
I have trouble adding the colorbar, I have tried to extract N colors from a colormap (N is my number of different headValues, or column -1) and then adding for each line plot the color corresponding here is my code to clarify:
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
Data = [['Time',0,0.33,..200],[0.269,4,4.005,...11],[0.362,4,3.999,...16.21],...[0.347,4,3.84,...15.8]]
headValues = [0.269,0.362,0.335,0.323,0.161,0.338,0.341,0.428,0.245,0.305,0.305,0.314,0.299,0.395,0.32,0.437,0.203,0.41,0.392,0.347]
# the differents headValues_y* of each column here in a list but also in Data
# with headValue[0] = Data[1][0], headValue[1] = Data[2][0] ...
cmap = mpl.cm.get_cmap('rainbow') # I choose my colormap
rgba = [] # the color container
for value in headValues:
rgba.append(cmap(value)) # so rgba will contain a different color for each headValue
fig, (ax,ax1) = plt.subplots(2,1) # creating my figure and two axes to put the Lines and the colorbar
c = 0 # index for my colors
for i in range(1, len(Data)):
ax.plot( Data[0][1:], Data[i][1:] , color = rgba[c])
# Data[0][1:] is x, Data[i][1:] is y, and the color associated with Data[i][0]
c += 1
fig.colorbar(mpl.cm.ScalarMappable(cmap= mpl.colors.ListedColormap(rgba)), cax=ax1, orientation='horizontal')
# here I create my scalarMappable for my lineplot and with the previously selected colors 'rgba'
plt.show()
The current result:
How to add the colorbar on the side or the bottom of the first axis ?
How to properly add a scale to this colorbar correspondig to different headValues ?
How to make the colorbar scale and colors match to the different lines on the plot with the link One color = One headValue ?
I have tried to work with scatterplot which are more convenient to use with scalarMappable but no solution allows me to do all these things at once.
Here is a possible approach. As the 'headValues' aren't sorted, nor equally spaced and one is even used twice, it is not fully clear what the most-desired result would be.
Some remarks:
The standard way of creating a colorbar in matplotlib doesn't need a separate subplot. Matplotlib will reduce the existing plot a bit and put the colorbar next to it (or below for a vertical bar).
Converting the 'headValues' to a numpy array allows for compact code, e.g. writing rgba = cmap(headValues) directly calculates the complete array.
Calling cmap on unchanged values will map 0 to the lowest color and 1 to the highest color, so for values only between 0.16 and 0.44 they all will be mapped to quite similar colors. One approach is to create a norm to map 0.16 to the lowest color and 0.44 to the highest. In code: norm = plt.Normalize(headValues.min(), headValues.max()) and then calculate rgba = cmap(norm(headValues)).
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
headValues = np.array([0.269, 0.362, 0.335, 0.323, 0.161, 0.338, 0.341, 0.428, 0.245, 0.305, 0.305, 0.314, 0.299, 0.395, 0.32, 0.437, 0.203, 0.41, 0.392, 0.347])
x = np.linspace(0, 200, 500)
# create Data similar to the data in the question
Data = [['Time'] + list(x)] + [[val] + list(np.sqrt(4 * x) * val + 4) for val in headValues]
headValues = np.array([d[0] for d in Data[1:]])
order = np.argsort(headValues)
inverse_order = np.argsort(order)
cmap = mpl.cm.get_cmap('rainbow')
rgba = cmap(np.linspace(0, 1, len(headValues))) # evenly spaced colors
fig, ax = plt.subplots(1, 1)
for i in range(1, len(Data)):
ax.plot(Data[0][1:], Data[i][1:], color=rgba[inverse_order[i-1]])
# Data[0][1:] is x, Data[i][1:] is y, and the color associated with Data[i-1][0]
cbar = fig.colorbar(mpl.cm.ScalarMappable(cmap=mpl.colors.ListedColormap(rgba)), orientation='vertical',
ticks=np.linspace(0, 1, len(rgba) * 2 + 1)[1::2])
cbar.set_ticklabels(headValues[order])
plt.show()
Alternatively, the colors can be assigned using their position in the colormap, but without creating
cmap = mpl.cm.get_cmap('rainbow')
norm = plt.Normalize(headValues.min(), headValues.max())
fig, ax = plt.subplots(1, 1)
for i in range(1, len(Data)):
ax.plot(Data[0][1:], Data[i][1:], color=cmap(norm(Data[i][0])))
cbar = fig.colorbar(mpl.cm.ScalarMappable(cmap=cmap, norm=norm))
To get ticks for each of the 'headValues', these ticks can be set explicitly. As putting a label for each tick will result in overlapping text, labels that are too close to other labels can be replaced by an empty string:
headValues.sort()
cbar2 = fig.colorbar(mpl.cm.ScalarMappable(cmap=cmap, norm=norm), ticks=headValues)
cbar2.set_ticklabels([val if val < next - 0.007 else '' for val, next in zip(headValues[:-1], headValues[1:])]
+ [headValues[-1]])
At the left the result of the first approach (colors in segments), at the right the alternative colorbars (color depending on value):
I want this kind of result. I want my code to read elements of a text file and if element=='healthy'
it should create a box in a graph and its color should be green ('healthy written in box').
else if element=='unhealthy'
it should create a box and its color should be red (with 'unhealthy written in box').
boxes should be horizontally aligned, and if more than 5 then remaining should start from the next row. (every row should contain only 5 boxes or less).
The end result should display a graph that contains boxes,
red denoting 'unhealthy' and green denoting 'healthy'
I found the following code, but it is not working they way I want it to.
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import numpy as np
from matplotlib import colors
#open text file (percen) that contains healthy/unhealthy
with open('percen.txt', 'r') as f:
result= [int(line) for line in f]
data = np.random.rand(10,10) * 20
cmap = colors.ListedColormap(['green'])
cmap1 = colors.ListedColormap(['red'])
bounds = [0,10,20]
norm = colors.BoundaryNorm(bounds, cmap.N)
fig, ax = plt.subplots(2,5 , sharex='col', sharey='row')
for i in range(2):
for j in range(5):
for element in result:
if (element=='healthy'):
ax[i,j].text(1, -3, 'healthy',
fontsize=15, ha='center', color='green')
ax[i,j].imshow(data,cmap=cmap, norm=norm)
else:
ax[i,j].text(1, -3, 'unhealthy',
fontsize=15, ha='center', color='red')
ax[i,j].imshow(data,cmap=cmap1,norm=norm)
fig
plt.show()
There are a few different ways you can do this and your code is probably not the best but we can use it as a starting point. Your issue is that you are looping through the plots and then looping through your data again for each plot. Your current code also adds text above the plot. If you want the text above I would recommend adding the label as a title, otherwise when you set your text inside the plot you need to specify the coordinates within the grid.
Below is a modified form of your code, play around with it some more to get what you want.
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import numpy as np
from matplotlib import colors
result = ['healthy', 'unhealthy', 'healthy', 'unhealthy', 'healthy', 'unhealthy', 'healthy', 'healthy', 'unhealthy', 'unhealthy']
data = np.random.rand(10,10) * 20
cmap = colors.ListedColormap(['green'])
cmap1 = colors.ListedColormap(['red'])
bounds = [0,10,20]
norm = colors.BoundaryNorm(bounds, cmap.N)
fig, ax = plt.subplots(2,5 , sharex='col', sharey='row',figsize=(15,8)) # Added figsize to better show your plot
element_index = 0
for i in range(2):
for j in range(5):
element = result[element_index] #Instead of the for loop, get the corresponding element
if (element=='healthy'):
ax[i,j].text(4.5,4.5, 'healthy',fontsize=15, ha='center' ,color='black',zorder=100) #Change zorder so label is over plot
ax[i,j].imshow(data,cmap=cmap, norm=norm)
ax[i,j].set_yticklabels('') #To remove arbitrary numbers on y axis
ax[i,j].set_xticklabels('') #To remove arbitrary numbers on y axis
elif element == 'unhealthy':
ax[i,j].text(4.5,4.5, 'unhealthy',fontsize=15, ha='center' ,color='black',zorder=100)
ax[i,j].imshow(data,cmap=cmap1,norm=norm)
ax[i,j].set_yticklabels('') #To remove arbitrary numbers on y axis
ax[i,j].set_xticklabels('') #To remove arbitrary numbers on x axis
element_index+=1 #Add 1 to the index so we get the next value for the next plot
fig
plt.show()
I was wondering how I am able to plot images side by side using matplotlib for example something like this:
The closest I got is this:
This was produced by using this code:
f, axarr = plt.subplots(2,2)
axarr[0,0] = plt.imshow(image_datas[0])
axarr[0,1] = plt.imshow(image_datas[1])
axarr[1,0] = plt.imshow(image_datas[2])
axarr[1,1] = plt.imshow(image_datas[3])
But I can't seem to get the other images to show. I'm thinking that there must be a better way to do this as I would imagine trying to manage the indexes would be a pain. I have looked through the documentation although I have a feeling I may be look at the wrong one. Would anyone be able to provide me with an example or point me in the right direction?
EDIT:
See the answer from #duhaime if you want a function to automatically determine the grid size.
The problem you face is that you try to assign the return of imshow (which is an matplotlib.image.AxesImage to an existing axes object.
The correct way of plotting image data to the different axes in axarr would be
f, axarr = plt.subplots(2,2)
axarr[0,0].imshow(image_datas[0])
axarr[0,1].imshow(image_datas[1])
axarr[1,0].imshow(image_datas[2])
axarr[1,1].imshow(image_datas[3])
The concept is the same for all subplots, and in most cases the axes instance provide the same methods than the pyplot (plt) interface.
E.g. if ax is one of your subplot axes, for plotting a normal line plot you'd use ax.plot(..) instead of plt.plot(). This can actually be found exactly in the source from the page you link to.
One thing that I found quite helpful to use to print all images :
_, axs = plt.subplots(n_row, n_col, figsize=(12, 12))
axs = axs.flatten()
for img, ax in zip(imgs, axs):
ax.imshow(img)
plt.show()
You are plotting all your images on one axis. What you want ist to get a handle for each axis individually and plot your images there. Like so:
fig = plt.figure()
ax1 = fig.add_subplot(2,2,1)
ax1.imshow(...)
ax2 = fig.add_subplot(2,2,2)
ax2.imshow(...)
ax3 = fig.add_subplot(2,2,3)
ax3.imshow(...)
ax4 = fig.add_subplot(2,2,4)
ax4.imshow(...)
For more info have a look here: http://matplotlib.org/examples/pylab_examples/subplots_demo.html
For complex layouts, you should consider using gridspec: http://matplotlib.org/users/gridspec.html
If the images are in an array and you want to iterate through each element and print it, you can write the code as follows:
plt.figure(figsize=(10,10)) # specifying the overall grid size
for i in range(25):
plt.subplot(5,5,i+1) # the number of images in the grid is 5*5 (25)
plt.imshow(the_array[i])
plt.show()
Also note that I used subplot and not subplots. They're both different
Below is a complete function show_image_list() that displays images side-by-side in a grid. You can invoke the function with different arguments.
Pass in a list of images, where each image is a Numpy array. It will create a grid with 2 columns by default. It will also infer if each image is color or grayscale.
list_images = [img, gradx, grady, mag_binary, dir_binary]
show_image_list(list_images, figsize=(10, 10))
Pass in a list of images, a list of titles for each image, and other arguments.
show_image_list(list_images=[img, gradx, grady, mag_binary, dir_binary],
list_titles=['original', 'gradx', 'grady', 'mag_binary', 'dir_binary'],
num_cols=3,
figsize=(20, 10),
grid=False,
title_fontsize=20)
Here's the code:
import matplotlib.pyplot as plt
import numpy as np
def img_is_color(img):
if len(img.shape) == 3:
# Check the color channels to see if they're all the same.
c1, c2, c3 = img[:, : , 0], img[:, :, 1], img[:, :, 2]
if (c1 == c2).all() and (c2 == c3).all():
return True
return False
def show_image_list(list_images, list_titles=None, list_cmaps=None, grid=True, num_cols=2, figsize=(20, 10), title_fontsize=30):
'''
Shows a grid of images, where each image is a Numpy array. The images can be either
RGB or grayscale.
Parameters:
----------
images: list
List of the images to be displayed.
list_titles: list or None
Optional list of titles to be shown for each image.
list_cmaps: list or None
Optional list of cmap values for each image. If None, then cmap will be
automatically inferred.
grid: boolean
If True, show a grid over each image
num_cols: int
Number of columns to show.
figsize: tuple of width, height
Value to be passed to pyplot.figure()
title_fontsize: int
Value to be passed to set_title().
'''
assert isinstance(list_images, list)
assert len(list_images) > 0
assert isinstance(list_images[0], np.ndarray)
if list_titles is not None:
assert isinstance(list_titles, list)
assert len(list_images) == len(list_titles), '%d imgs != %d titles' % (len(list_images), len(list_titles))
if list_cmaps is not None:
assert isinstance(list_cmaps, list)
assert len(list_images) == len(list_cmaps), '%d imgs != %d cmaps' % (len(list_images), len(list_cmaps))
num_images = len(list_images)
num_cols = min(num_images, num_cols)
num_rows = int(num_images / num_cols) + (1 if num_images % num_cols != 0 else 0)
# Create a grid of subplots.
fig, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
# Create list of axes for easy iteration.
if isinstance(axes, np.ndarray):
list_axes = list(axes.flat)
else:
list_axes = [axes]
for i in range(num_images):
img = list_images[i]
title = list_titles[i] if list_titles is not None else 'Image %d' % (i)
cmap = list_cmaps[i] if list_cmaps is not None else (None if img_is_color(img) else 'gray')
list_axes[i].imshow(img, cmap=cmap)
list_axes[i].set_title(title, fontsize=title_fontsize)
list_axes[i].grid(grid)
for i in range(num_images, len(list_axes)):
list_axes[i].set_visible(False)
fig.tight_layout()
_ = plt.show()
As per matplotlib's suggestion for image grids:
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
fig = plt.figure(figsize=(4., 4.))
grid = ImageGrid(fig, 111, # similar to subplot(111)
nrows_ncols=(2, 2), # creates 2x2 grid of axes
axes_pad=0.1, # pad between axes in inch.
)
for ax, im in zip(grid, image_data):
# Iterating over the grid returns the Axes.
ax.imshow(im)
plt.show()
I end up at this url about once a week. For those who want a little function that just plots a grid of images without hassle, here we go:
import matplotlib.pyplot as plt
import numpy as np
def plot_image_grid(images, ncols=None, cmap='gray'):
'''Plot a grid of images'''
if not ncols:
factors = [i for i in range(1, len(images)+1) if len(images) % i == 0]
ncols = factors[len(factors) // 2] if len(factors) else len(images) // 4 + 1
nrows = int(len(images) / ncols) + int(len(images) % ncols)
imgs = [images[i] if len(images) > i else None for i in range(nrows * ncols)]
f, axes = plt.subplots(nrows, ncols, figsize=(3*ncols, 2*nrows))
axes = axes.flatten()[:len(imgs)]
for img, ax in zip(imgs, axes.flatten()):
if np.any(img):
if len(img.shape) > 2 and img.shape[2] == 1:
img = img.squeeze()
ax.imshow(img, cmap=cmap)
# make 16 images with 60 height, 80 width, 3 color channels
images = np.random.rand(16, 60, 80, 3)
# plot them
plot_image_grid(images)
Sample code to visualize one random image from the dataset
def get_random_image(num):
path=os.path.join("/content/gdrive/MyDrive/dataset/",images[num])
image=cv2.imread(path)
return image
Call the function
images=os.listdir("/content/gdrive/MyDrive/dataset")
random_num=random.randint(0, len(images))
img=get_random_image(random_num)
plt.figure(figsize=(8,8))
plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
Display cluster of random images from the given dataset
#Making a figure containing 16 images
lst=random.sample(range(0,len(images)), 16)
plt.figure(figsize=(12,12))
for index,value in enumerate(lst):
img=get_random_image(value)
img_resized=cv2.resize(img,(400,400))
#print(path)
plt.subplot(4,4,index+1)
plt.imshow(img_resized)
plt.axis('off')
plt.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)
#plt.savefig(f"Images/{lst[0]}.png")
plt.show()
Plotting images present in a dataset
Here rand gives a random index value which is used to select a random image present in the dataset and labels has the integer representation for every image type and labels_dict is a dictionary holding key val information
fig,ax = plt.subplots(5,5,figsize = (15,15))
ax = ax.ravel()
for i in range(25):
rand = np.random.randint(0,len(image_dataset))
image = image_dataset[rand]
ax[i].imshow(image,cmap = 'gray')
ax[i].set_title(labels_dict[labels[rand]])
plt.show()
I am new with python I am trying to save a huge bunch of data into a pdf with figures using PdfPages of matplotlib and subplots. Problem is that I found a blottleneck I dont know how to solve, the code goes something like:
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
with PdfPages('myfigures.pdf') as pdf:
for i in range(1000):
f,axarr = plt.subplots(2, 3)
plt.subplots(2, 3)
axarr[0, 0].plot(x1, y1)
axarr[1, 0].plot(x2, y2)
pdf.savefig(f)
plt.close('all')
Creating a figure each loop it is highly time consuming, but if I put that outside the loop it doesnt clear each plot. Other options I tried like clear() or clf() didnt work either or ended in creating multiple different figures, anyone as an idea on how to put this in a different way so that it goes faster?
Multipage PDF appending w/ matplotlib
Create 𝑚-rows × 𝑛-cols matrices of subplot axes arrays per pdf page & save (append) as each page's matrix of subplots becomes completely full → then create new page, repeat, 𝐞𝐭𝐜.
To contain large numbers of subplots as multipage output inside a single pdf, immediately start filling the first page with your plot(s), then you'll need to create a new page after detecting that the latest subplot addition in your iteration of plot generation has maxed out the available space in the current page's 𝑚-rows × 𝑛-cols subplot-array layout [i.e., an 𝑚 × 𝑛 matrix of subplots], as applicable.
Here's a way to do it where the dimensions (𝑚 × 𝑛) controlling the number of subplots per page can easily be changed:
import sys
import matplotlib
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
import numpy as np
matplotlib.rcParams.update({"font.size": 6})
# Dimensions for any m-rows × n-cols array of subplots / pg.
m, n = 4, 5
# Don't forget to indent after the with statement
with PdfPages("auto_subplotting.pdf") as pdf:
"""Before beginning the iteration through all the data,
initialize the layout for the plots and create a
representation of the subplots that can be easily
iterated over for knowing when to create the next page
(and also for custom settings like partial axes labels)"""
f, axarr = plt.subplots(m, n, sharex="col", sharey="row")
arr_ij = [(x, y) for x, y in np.ndindex(axarr.shape)]
subplots = [axarr[index] for index in arr_ij]
# To conserve needed plotting real estate,
# only label the bottom row and leftmost subplots
# as determined automatically using m and n
splot_index = 0
for s, splot in enumerate(subplots):
splot.set_ylim(0, 0.15)
splot.set_xlim(0, 50)
last_row = m * n - s < n + 1
first_in_row = s % n == 0
if last_row:
splot.set_xlabel("X-axis label")
if first_in_row:
splot.set_ylabel("Y-axis label")
# Iterate through each sample in the data
for sample in range(33):
# As a stand-in for real data, let's just make numpy take 100 random draws
# from a poisson distribution centered around say ~25 and then display
# the outcome as a histogram
scaled_y = np.random.randint(20, 30)
random_data = np.random.poisson(scaled_y, 100)
subplots[splot_index].hist(
random_data,
bins=12,
normed=True,
fc=(0, 0, 0, 0),
lw=0.75,
ec="b",
)
# Keep collecting subplots (into the mpl-created array;
# see: [1]) through the samples in the data and increment
# a counter each time. The page will be full once the count is equal
# to the product of the user-set dimensions (i.e. m * n)
splot_index += 1
"""Once an mxn number of subplots have been collected
you now have a full page's worth, and it's time to
close and save to pdf that page and re-initialize for a
new page possibly. We can basically repeat the same
exact code block used for the first layout
initialization, but with the addition of 3 new lines:
+2 for creating & saving the just-finished pdf page,
+1 more to reset the subplot index (back to zero)"""
if splot_index == m * n:
pdf.savefig()
plt.close(f)
f, axarr = plt.subplots(m, n, sharex="col", sharey="row")
arr_ij = [(x, y) for x, y in np.ndindex(axarr.shape)]
subplots = [axarr[index] for index in arr_ij]
splot_index = 0
for s, splot in enumerate(subplots):
splot.set_ylim(0, 0.15)
splot.set_xlim(0, 50)
last_row = (m * n) - s < n + 1
first_in_row = s % n == 0
if last_row:
splot.set_xlabel("X-axis label")
if first_in_row:
splot.set_ylabel("Y-axis label")
# Done!
# But don't forget to save to pdf after the last page
pdf.savefig()
plt.close(f)
For any m×n layout, just change the declarations for the values of m and n, respectively. From the code above (where "m, n = 4, 5"), a 4x5 matrix of subplots with a total 33 samples is produced as a two-page pdf output file:
References
Link to matplotlib subplots official docs.
Note:
There will be, on the final page of the multipage PDF, a number of blank subplots equal to the remainder from the the product of your chosen subplots 𝑚 × 𝑛 layout dimension numbers and your total number of samples/data to plot. E.g., say m=3, and n=4, thus you get 3 rows of 4 subplots each equals 12 per page, and if you had say 20 samples, then there would be a two-page pdf auto-created with a total of 24 subplots with the last 4 (so full bottom-most row in this hypothetical example) of subplots on the second page empty.
Using seaborn
For a more advanced (& more "pythonic"*) extension of the implementation above, see below:
The multipage handling should probably be simplified by creating a new_page function; it's better to not repeat code verbatim*, especially if you start customizing the plots in which case you won't want to have to mirror every change and type the same thing twice. A more customized aesthetic based off of seaborn and utilizing the available matplotlib parameters like shown below might be preferable too.
Add a new_page function & some customizations for the subplot style:
import matplotlib.pyplot as plt
import numpy as np
import random
import seaborn as sns
from matplotlib.backends.backend_pdf import PdfPages
# this erases labels for any blank plots on the last page
sns.set(font_scale=0.0)
m, n = 4, 6
datasize = 37
# 37 % (m*n) = 13, (m*n) - 13 = 24 - 13 = 11. Thus 11 blank subplots on final page
# custom colors scheme / palette
ctheme = [
"k", "gray", "magenta", "fuchsia", "#be03fd", "#1e488f",
(0.44313725490196076, 0.44313725490196076, 0.88627450980392153), "#75bbfd",
"teal", "lime", "g", (0.6666674, 0.6666663, 0.29078014184397138), "y",
"#f1da7a", "tan", "orange", "maroon", "r", ] # pick whatever colors you wish
colors = sns.blend_palette(ctheme, datasize)
fz = 7 # labels fontsize
def new_page(m, n):
global splot_index
splot_index = 0
fig, axarr = plt.subplots(m, n, sharey="row")
plt.subplots_adjust(hspace=0.5, wspace=0.15)
arr_ij = [(x, y) for x, y in np.ndindex(axarr.shape)]
subplots = [axarr[index] for index in arr_ij]
for s, splot in enumerate(subplots):
splot.grid(
b=True,
which="major",
color="gray",
linestyle="-",
alpha=0.25,
zorder=1,
lw=0.5,
)
splot.set_ylim(0, 0.15)
splot.set_xlim(0, 50)
last_row = m * n - s < n + 1
first_in_row = s % n == 0
if last_row:
splot.set_xlabel("X-axis label", labelpad=8, fontsize=fz)
if first_in_row:
splot.set_ylabel("Y-axis label", labelpad=8, fontsize=fz)
return (fig, subplots)
with PdfPages("auto_subplotting_colors.pdf") as pdf:
fig, subplots = new_page(m, n)
for sample in xrange(datasize):
splot = subplots[splot_index]
splot_index += 1
scaled_y = np.random.randint(20, 30)
random_data = np.random.poisson(scaled_y, 100)
splot.hist(
random_data,
bins=12,
normed=True,
zorder=2,
alpha=0.99,
fc="white",
lw=0.75,
ec=colors.pop(),
)
splot.set_title("Sample {}".format(sample + 1), fontsize=fz)
# tick fontsize & spacing
splot.xaxis.set_tick_params(pad=4, labelsize=6)
splot.yaxis.set_tick_params(pad=4, labelsize=6)
# make new page:
if splot_index == m * n:
pdf.savefig()
plt.close(fig)
fig, subplots = new_page(m, n)
if splot_index > 0:
pdf.savefig()
plt.close(f)
I need to create a chart, that has a grid like in the following picture.
The key factors being:
The x-axis is time with each tick marking 30 seconds
y-axes labels in the chart repeat at a variable interval
Chart must grow with the amount of data (i.e. for 30 minutes of data, it should be 60 boxes wide)
I have been looking into matplotlib for a bit, and it seems promising. I also managed to fill the chart with data. See my result for 40 Minutes of data.
But before I invest more time into research, I must know if this goal is even possible. If not I'll have to look into other charts. Thanks for your help!
Here is the source for the above image (my_data is actually read from a csv, but filled with random junk here):
from matplotlib import dates
import matplotlib.pyplot as plt
import numpy as np
import time
from datetime import datetime
my_data = list()
for i in range(3000):
my_data.append((datetime.fromtimestamp(i + time.time()), np.random.randint(50, 200), np.random.randint(10, 100)))
hfmt = dates.DateFormatter('%H:%M:%S')
fig = plt.figure()
actg = fig.add_subplot(2, 1, 1) # two rows, one column, first plot
plt.ylim(50, 210)
atoco = fig.add_subplot(2, 1, 2) # second plot
plt.ylim(0, 100)
actg.xaxis.set_minor_locator(dates.MinuteLocator())
actg.xaxis.set_major_formatter(hfmt)
atoco.xaxis.set_minor_locator(dates.MinuteLocator())
atoco.xaxis.set_major_formatter(hfmt)
plt.xticks(rotation=45)
times = []
fhr1 = []
toco = []
for key in my_data:
times.append(key[0])
fhr1.append(key[1])
toco.append(key[2])
actg.plot_date(times, fhr1, '-')
atoco.plot_date(times, toco, '-')
for ax in fig.axes:
ax.grid(True)
plt.tight_layout()
plt.show()
OK, here's something close to what you are after, I think.
I've used dates.SecondLocator(bysecond=[0,30]) to set the grid every 30 seconds (also need to make sure the grid is set on the minor ticks, with ax.xaxis.grid(True,which='both')
To repeat the yticklabels, I create a twinx of the axes for every major tick on the xaxis, and move the spine to that tick's location. I then set the spine color to none, so it doesn't show up, and turn of the actual ticks, but not the tick labels.
from matplotlib import dates
import matplotlib.pyplot as plt
import numpy as np
import time
from datetime import datetime
# how often to show xticklabels and repeat yticklabels:
xtickinterval = 10
# Make random data
my_data = list()
for i in range(3000):
my_data.append((datetime.fromtimestamp(i + time.time()), np.random.randint(120, 160), np.random.randint(10, 100)))
hfmt = dates.DateFormatter('%H:%M:%S')
fig = plt.figure()
actg = fig.add_subplot(2, 1, 1) # two rows, one column, first plot
actg.set_ylim(50, 210)
atoco = fig.add_subplot(2, 1, 2,sharex=actg) # second plot, share the xaxis with actg
atoco.set_ylim(-5, 105)
# Set the major ticks to the intervals specified above.
actg.xaxis.set_major_locator(dates.MinuteLocator(byminute=np.arange(0,60,xtickinterval)))
# Set the minor ticks to every 30 seconds
minloc = dates.SecondLocator(bysecond=[0,30])
minloc.MAXTICKS = 3000
actg.xaxis.set_minor_locator(minloc)
# Use the formatter specified above
actg.xaxis.set_major_formatter(hfmt)
times = []
fhr1 = []
toco = []
for key in my_data:
times.append(key[0])
fhr1.append(key[1])
toco.append(key[2])
print times[-1]-times[0]
# Make your plot
actg.plot_date(times, fhr1, '-')
atoco.plot_date(times, toco, '-')
for ax in [actg,atoco]:
# Turn off the yticklabels on the right hand side
ax.set_yticklabels([])
# Set the grids
ax.xaxis.grid(True,which='both',color='r')
ax.yaxis.grid(True,which='major',color='r')
# Create new yticklabels every major tick on the xaxis
for tick in ax.get_xticks():
tx = ax.twinx()
tx.set_ylim(ax.get_ylim())
tx.spines['right'].set_position(('data',tick))
tx.spines['right'].set_color('None')
for tic in tx.yaxis.get_major_ticks():
tic.tick1On = tic.tick2On = False
plt.tight_layout()
plt.show()